【目标检测01】真实框、预测框、锚框和交并比IoU

news2024/11/24 12:49:29

文章目录

    • 1. 任务定义
    • 2. 基本概念
      • 2.1 边界框(bounding box)
      • 2.2 真实框、预测框和锚框
      • 2.3 交并比 (IoU)
      • 2.4 代码实现

1. 任务定义

目标检测的主要目的是让计算机可以自动识别图片或者视频帧中所有目标的类别,并在该目标周围绘制边界框,标示出每个目标的位置,如图所示。
在这里插入图片描述

2. 基本概念

2.1 边界框(bounding box)

检测任务需要同时预测物体的类别和位置,因此需要引入一些跟位置相关的概念。通常使用边界框(bounding box,bbox)来表示物体的位置,边界框是正好能包含物体的矩形框,如下图所示,图中3个人分别对应3个边界框。
在这里插入图片描述
一般有两种表示边界框位置的格式:

(1) x y x y xyxy xyxy,即 ( x 1 , y 1 , x 2 , y 2 ) (x1, y1, x2, y2) (x1,y1,x2,y2),其中 ( x 1 , y 1 ) (x1, y1) (x1,y1) 是矩形框左上角的坐标, ( x 2 , y 2 ) (x2, y2) (x2,y2) 是矩形框右下角的坐标。

(2) x y w h xywh xywh,即 ( x , y , w , h ) (x, y, w, h) (x,y,w,h), 其中 ( x , y ) (x, y) (x,y) 是矩形框的中心坐标, w w w 是 矩形框的宽度, h h h 是矩形框的高度。

因此,在阅读代码的时候,要注意使用的是哪一种格式的表示方式。

2.2 真实框、预测框和锚框

训练数据集的标签里给出目标物体边界框所对应的位置叫真实框

模型预测出目标物体边界框所对应的位置叫预测框

不同于真实框和预测框,锚框是人为预先设定好的矩形框,模型在这种锚框的基础上预测偏移量才能得到预测框

2.3 交并比 (IoU)

如何衡量预测框和真实框之间的关系呢?在检测任务中是使用交并比(Intersection of Union,IoU)作为衡量指标。这一概念来源于数学中的集合,用来描述两个集合A和B之间的关系,它等于两个集合的交集里面所包含的元素个数,除以它们的并集里面所包含的元素个数,具体计算公式如下:
I O U = A ∩ B A ∪ B IOU = \frac{A \cap B}{A \cup B} IOU=ABAB我们将用这个概念来描述两个框之间的重合度。两个框可以看成是两个像素的集合,它们的交并比等于两个框重合部分的面积除以它们合并起来的面积。下图“交集”中青色区域是两个框的重合面积,图“并集”中蓝色区域是两个框的相并面积。用这两个面积相除即可得到它们之间的交并比。
在这里插入图片描述
假设两个矩形框A和B的位置分别为:
A : [ x a 1 , y a 1 , x a 2 , y a 2 ] A : [ x b 1 , y b 1 , x b 2 , y b 2 ] A: [x_{a1}, y_{a1}, x_{a2}, y_{a2}] \\ A: [x_{b1}, y_{b1}, x_{b2}, y_{b2}] A:[xa1,ya1,xa2,ya2]A:[xb1,yb1,xb2,yb2]它们之间的位置关系如图所示:
在这里插入图片描述
A和B相交部分左上角坐标为:
x 1 = m a x ( x a 1 , x b 1 ) y 1 = m a x ( y a 1 , y b 1 ) x1 = max(x_{a1}, x_{b1})\\ y1 = max(y_{a1}, y_{b1}) x1=max(xa1,xb1)y1=max(ya1,yb1) 相交部分右下角坐标为:
x 2 = m i n ( x a 2 , x b 2 ) y 2 = m i n ( y a 2 , y b 2 ) x2 = min(x_{a2}, x_{b2})\\ y2 = min(y_{a2}, y_{b2}) x2=min(xa2,xb2)y2=min(ya2,yb2)相交部分面积为:
i n t e r s e c t i o n = m a x ( x 2 − x 1 + 1.0 , 0 ) ⋅ m a x ( y 2 − y 1 + 1.0 , 0 ) intersection = max(x_2 - x_1 + 1.0, 0) \cdot max(y_2 - y_1 + 1.0, 0) intersection=max(x2x1+1.0,0)max(y2y1+1.0,0)分别计算A和B的面积:
S A = ( x a 2 − x a 1 + 1.0 ) ⋅ ( y a 2 − y a 1 + 1.0 ) S B = ( x b 2 − x b 1 + 1.0 ) ⋅ ( y b 2 − y b 1 + 1.0 ) S_A = (x_{a2} - x_{a1} + 1.0) \cdot (y_{a2} - y_{a1} + 1.0) \\ S_B = (x_{b2} - x_{b1} + 1.0) \cdot (y_{b2} - y_{b1} + 1.0) SA=(xa2xa1+1.0)(ya2ya1+1.0)SB=(xb2xb1+1.0)(yb2yb1+1.0)计算相并部分:
u n i o n = S A + S B − i n t e r s e c t i o n union = S_A + S_B - intersection union=SA+SBintersection 计算交并比:
I o U = i n t e r s e c t i o n u n i o n IoU = \frac{intersection}{union} IoU=unionintersection

2.4 代码实现

(1)矩形框坐标形式为 x y x y xyxy xyxy 形式时:

def box_iou_xyxy(box1, box2):
    # 获取box1左上角和右下角的坐标
    x1min, y1min, x1max, y1max = box1[0], box1[1], box1[2], box1[3]
    # 计算box1的面积
    s1 = (y1max - y1min + 1.) * (x1max - x1min + 1.)
    # 获取box2左上角和右下角的坐标
    x2min, y2min, x2max, y2max = box2[0], box2[1], box2[2], box2[3]
    # 计算box2的面积
    s2 = (y2max - y2min + 1.) * (x2max - x2min + 1.)
    
    # 计算相交矩形框的坐标
    xmin = np.maximum(x1min, x2min)
    ymin = np.maximum(y1min, y2min)
    xmax = np.minimum(x1max, x2max)
    ymax = np.minimum(y1max, y2max)
    # 计算相交矩形行的高度、宽度、面积
    inter_h = np.maximum(ymax - ymin + 1., 0.)
    inter_w = np.maximum(xmax - xmin + 1., 0.)
    intersection = inter_h * inter_w
    # 计算相并面积
    union = s1 + s2 - intersection
    # 计算交并比
    iou = intersection / union
    return iou

1)矩形框坐标形式为 x y w h xywh xywh 形式时:

def box_iou_xywh(box1, box2):
     # 获取box1左上角和右下角的坐标
    x1min, y1min = box1[0] - box1[2]/2.0, box1[1] - box1[3]/2.0
    x1max, y1max = box1[0] + box1[2]/2.0, box1[1] + box1[3]/2.0
 	# 计算box1的面积
    s1 = box1[2] * box1[3]

	 # 获取box2左上角和右下角的坐标
    x2min, y2min = box2[0] - box2[2]/2.0, box2[1] - box2[3]/2.0
    x2max, y2max = box2[0] + box2[2]/2.0, box2[1] + box2[3]/2.0
     # 计算box2的面积
    s2 = box2[2] * box2[3]

    xmin = np.maximum(x1min, x2min)
    ymin = np.maximum(y1min, y2min)
    xmax = np.minimum(x1max, x2max)
    ymax = np.minimum(y1max, y2max)
    inter_h = np.maximum(ymax - ymin, 0.)
    inter_w = np.maximum(xmax - xmin, 0.)
    intersection = inter_h * inter_w

    union = s1 + s2 - intersection
    iou = intersection / union
    return iou

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2223891.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【linux网络编程】| 网络基础 | 解析IP与Mac地址的区别

前言:本节内容讲解一些网络基础相关的知识点, 不涉及网络代码!同样的本节内容是作为前一篇的补充知识点, 前一篇文章地址:【linux网络编程】 | 网络基础Ⅰ| 认识网络-CSDN博客,本篇文章内容较少&#xff0c…

命名空间std, using namespace std

命名空间std&#xff0c;using namespace std 在标准C以前&#xff0c;都是用#include<iostream.h>这样的写法的&#xff0c;因为要包含进来的头文件名就是iostream.h。标准C引入了名字空间的概念&#xff0c;并把iostream等标准库中的东东封装到了std名字空间中&#x…

UE5 源码学习 初始化

跟着 https://www.cnblogs.com/timlly/p/13877623.html 学习 入口函数 UnrealEngine\Engine\Source\Runtime\Launch\Private\Windows\LaunchWindows.cpp WinMain 入口 int32 WINAPI WinMain(_In_ HINSTANCE hInInstance, _In_opt_ HINSTANCE hPrevInstance, _In_ char* p…

unity开发之可视化制作动画

录制动画 1&#xff09;打开录制动画页面&#xff08;或者按快捷键ctrl6&#xff09; 2&#xff09;选中需要录制动画的对象 3&#xff09;创建动画列表&#xff0c;注意现在还没有录制动画&#xff0c;我这里创建了开门和关门动画列表 4&#xff09;选择需要录制动画的对象的相…

【计网】UDP Echo Server与Client实战:从零开始构建简单通信回显程序

目录 前言&#xff1a; 1.实现udpserver类 1.1.创建udp socket 套接字 --- 必须要做的 socket&#xff08;&#xff09;讲解 代码实现&#xff1a;​编辑 代码讲解&#xff1a; 1.2.填充sockaddr_in结构 代码实现&#xff1a; 代码解析&#xff1a; 1.3.bind sockfd和…

关于在vue2中接受后端返回的二进制流并进行本地下载

后端接口返回&#xff1a; 前端需要在两个地方写代码&#xff1a; 1.封装接口处&#xff0c;responseType: blob 2.接收相应处 download() {if (this.selectionList.length 0) {this.$message.error("请选择要导出的数据&#xff01;");} else {examineruleExport…

【Git】将本地代码提交到github仓库

一、创建仓库 复制这里的HTTP连接码 二、仓库初始化 进入你要提交的代码文件夹 右键选择 Git Bach Here 输入命令 git clone [HTTP连接码] 此时文件夹里会出现一个新的文件夹&#xff0c;将原来的文件当今这个新的文件夹 三、上传代码 执行命令 cd [新文件夹] 将所有文件放…

ArcGIS必会的选择要素方法(AND、OR、R、IN等)位置选择等

今天来看看ArcGIS中的几个选择的重要使用方法 1、常规选择、 2、模糊查询、 3、组合复合条件查询&#xff08;AND、OR、IN&#xff09;&#xff0c; 4、空值NULL查询 5、位置选择 推荐学习&#xff1a; 以梦为马&#xff0c;超过万名学员学习ArcGIS入门到实战的应用课程…

Pandas模块之垂直或水平交错条形图

目录 df.plot() 函数Pandas模块之垂直条形图Pandas模块之水平交错条形图 df.plot() 函数 df.plot() 是 Pandas 中的一个函数&#xff0c;用于绘制数据框中的数据。它是基于 Matplotlib 库构建的&#xff0c;可以轻松地创建各种类型的图表&#xff0c;包括折线图、柱状图、散点…

权重衰减学习

1.权重衰减是最广泛使用的正则化技术之一 %matplotlib inline import torch from torch import nn from d2l import torch as d2l 2.生成数据 n_train, n_test, num_inputs, batch_size 20, 100, 200, 5 true_w, true_b torch.ones((num_inputs, 1)) * 0.01, 0.05 train_dat…

论文笔记:LaDe: The First Comprehensive Last-mile Delivery Dataset from Industry

2023 KDD 1 intro 1.1 背景 随着城市化进程的加快和电子商务的发展&#xff0c;最后一公里配送已成为一个关键的研究领域 最后一公里配送&#xff0c;如图1所示&#xff0c;是指连接配送中心和客户的包裹运输过程&#xff0c;包括包裹的取件和配送除了对客户满意度至关重要外…

《等保测评新视角:安全与发展的双赢之道》

在数字化转型的浪潮中&#xff0c;企业面临的不仅是技术革新的挑战&#xff0c;更有信息安全的严峻考验。等保测评&#xff0c;作为国家网络安全等级保护的一项重要措施&#xff0c;不仅为企业的安全护航&#xff0c;更成为推动企业高质量发展的新引擎。本文将从全新的视角&…

如何用 Spring AI + Ollama 构建生成式 AI 应用

为了构建生成式AI应用&#xff0c;需要完成两个部分&#xff1a; • AI大模型服务&#xff1a;有两种方式实现&#xff0c;可以使用大厂的API&#xff0c;也可以自己部署&#xff0c;本文将采用ollama来构建• 应用构建&#xff1a;调用AI大模型的能力实现业务逻辑&#xff0c;…

mfc之tab标签控件的使用--附TabSheet源码

TabSheet源码 TabSheet.h #if !defined(AFX_TABSHEET_H__42EE262D_D15F_46D5_8F26_28FD049E99F4__INCLUDED_) #define AFX_TABSHEET_H__42EE262D_D15F_46D5_8F26_28FD049E99F4__INCLUDED_#if _MSC_VER > 1000 #pragma once #endif // _MSC_VER > 1000 // TabSheet.h : …

es实现桶聚合

目录 聚合 聚合的分类 DSL实现桶聚合 dsl语句 结果 聚合结果排序 限定聚合范围 总结 聚合必须的三要素&#xff1a; 聚合可配置的属性 DSL实现metric聚合 例如&#xff1a;我们需要获取每个品牌的用户评分的min,max,avg等值 只求socre的max 利用RestHighLevelClien…

【Multisim14.0正弦波>方波>三角波】2022-6-8

缘由有没有人会做啊Multisim14.0-其他-CSDN问答参考方波、三角波、正弦波信号产生 - 豆丁网

arcgis中dem转模型导入3dmax

文末分享素材 效果 1、准备数据 (1)DEM (2)DOM 2、打开arcscene软件 3、加载DEM、DOM数据 4、设置DOM的高度为DEM

【虚幻引擎UE】UE5 音频共振特效制作

UE5 音频共振特效制作 一、基础准备1.插件准备2.音源准备 二、创建共感NRT解析器和设置1.解析器选择依据2. 创建解析器3. 创建解析器设置&#xff08;和2匹配&#xff09;4.共感NRT解析器设置参数调整5.为共感NRT解析器关联要解析的音频和相应设置 三、蓝图控制1.创建Actor及静…

Openlayers高级交互(8/20):选取feature,平移feature

本示例介绍如何在vue+openlayers中使用Translate,选取feature,平移feature。选择的时候需要按住shift。Translate 功能通常是指在地图上平移某个矢量对象的位置。在 OpenLayers 中,可以通过修改矢量对象的几何位置来实现这一功能。 效果图 配置方式 1)查看基础设置:http…

AnaTraf | 全面掌握网络健康状态:全流量的分布式网络性能监测系统

AnaTraf 网络性能监控系统NPM | 全流量回溯分析 | 网络故障排除工具AnaTraf网络流量分析仪是一款基于全流量&#xff0c;能够实时监控网络流量和历史流量回溯分析的网络性能监控与诊断系统&#xff08;NPMD&#xff09;。通过对网络各个关键节点的监测&#xff0c;收集网络性能…