JAVA线程基础二——锁的概述之乐观锁与悲观锁

news2024/9/30 7:07:41

乐观锁与悲观锁

        乐观锁和悲观锁是在数据库中引入的名词,但是在并发包锁里面也引入了类似的思想,所以这里还是有必要讲解下。    

        悲观锁指对数据被外界修改持保守态度,认为数据很容易就会被其他线程修改,所以在数据被处理前先对数据进行加锁,并在整个数据处理过程中,使数据处于锁定状态。悲观锁的实现往往依靠数据库提供的锁机制,即在数据库中,在对数据记录操作前给记录加排它锁。如果获取锁失败,则说明数据正在被其他线程修改,当前线程则等待或者抛出异常。如果获取锁成功,则对记录进行操作,然后提交事务后释放排它锁。    

下面我们看一个典型的例子,看它如何使用悲观锁来避免多线程同时对一个记录进行修改。

        对于如上代码,假设 updateEntry、query、update 方法都使用了事务切面的方法,并且事务传播性被设置为required。执行updateEntry 方法时如果上层调用方法里面没有开启事务,则会即时开启一个事务,然后执行代码(1)。代码(1)调用了query方法,其根据指定id 从数据库里面查询出一个记录。由于事务传播性为requried,所以执行 query 时没有开启新的事务,而是加入了updateEntry开启的事务,也就是在updateEntry方法执行完毕提交事务时,query方法才会被提交,就是说记录的锁定会持续到updateEntry执行结束。

        代码(2)则对获取的记录进行修改,代码(3)把修改的内容写回数据库,同样代码(3)的 update 方法也没有开启新的事务,而是加入了updateEntry的事务。也就是 updateEntry、query、update 方法共用同一个事务。
        当多个线程同时调用updateEntry方法,并且传递的是同一个id时,只有一个线程执行代码(1)会成功,其他线程则会被阻塞,这是因为在同一时间只有一个线程可以获取对应记录的锁,在获取锁的线程释放锁前(updateEntry执行完毕,提交事务前),其他线程必须等待,也就是在同一时间只有一个线程可以对该记录进行修改。
        乐观锁是相对悲观锁来说的,它认为数据在一般情况下不会造成冲突,所以在访问记录前不会加排它锁,而是在进行数据提交更新时,才会正式对数据冲突与否进行检测。具体来说,根据 update返回的行数让用户决定如何去做。将上面的例子改为使用乐观锁的代码如下。

        在如上代码中,当多个线程调用updateEntry方法并且传递相同的id时,多个线程可以同时执行代码(1)获取id对应的记录并把记录放入线程本地栈里面,然后可以同时执行代码(2)对自己栈上的记录进行修改,多个线程修改后各自的entry里面的属性应该都不一样了。然后多个线程可以同时执行代码(3),代码(3)中的update语句的 where 条件里面加入了 version=#{version}条件,并且set语句中多了 version=S{version}+1 表达式,该表达式的意思是,如果数据库里面id=#{id}and version=#{version}的记录存在,则更新version 的值为原来的值加 1,这有点 CAS 操作的意思。
        假设多个线程同时执行 updateEntry并传递相同的id,那么它们执行代码(1)时获取的 Entry 是同一个,获取的Entry 里面的 version值都是相同的(这里假设 version=0)。当多个线程执行代码(3)时,由于update 语句本身是原子性的,假如线程A执行update 成功了,那么这时候id 对应的记录的 version值由原始 version值变为了1。其他线程执行代码(3)更新时发现数据库里面已经没有了version=0的语句,所以会返回影响行号0。在业务上根据返回值为0就可以知道当前更新没有成功,那么接下来有两个做法,如果业务发现更新失败了,下面可以什么都不做,也可以选择重试,如果选择重试,则updateEntry的代码可以修改为如下。

        如上代码使用 retryNum 设置更新失败后的重试次数,如果代码(3.1)执行后返回0,则说明代码(1.1)获取的记录已经被修改了,则循环一次,重新通过代码(1.1)获取最新的数据,然后再次执行代码(3.1)尝试更新。这类似CAS的自旋操作,只是这里没有使用死循环,而是指定了尝试次数。
        乐观锁并不会使用数据库提供的锁机制,一般在表中添加version字段或者使用业务状态来实现。乐观锁直到提交时才锁定,所以不会产生任何死锁。

公平锁与非公平锁

        根据线程获取锁的抢占机制,锁可以分为公平锁和非公平锁,公平锁表示线程获取锁的顺序是按照线程请求锁的时间早晚来决定的,也就是最早请求锁的线程将最早获取到锁。而非公平锁则在运行时闯入,也就是先来不一定先得。

        ReentrantLock提供了公平和非公平锁的实现

  • 公平锁:ReentrantLock pairLock=new ReentrantLock(true)。
  •  非公平锁:ReentrantLock pairLock=new ReentrantLock(false)。如果构造函数不传递参数,则默认是非公平锁。

        例如,假设线程A已经持有了锁,这时候线程B请求该锁其将会被挂起。当线程 A释放锁后,假如当前有线程C也需要获取该锁,如果采用非公平锁方式,则根据线程调度策略,线程 B和 线程C两者之一可能获取锁,这时候不需要任何其他干涉,而如果使用公平锁则需要把C挂起,让B获取当前锁。
        在没有公平性需求的前提下尽量使用非公平锁,因为公平锁会带来性能开销

       

独占锁与共享锁

        根据锁只能被单个线程持有还是能被多个线程共同持有,锁可以分为独占锁和共享锁。

        独占锁保证任何时候都只有一个线程能得到锁,Reentrantock就是以独占方式实现的。共享锁则可以同时由多个线程持有,例如ReadWriteLock读写锁,它允许一个资源可以被多线程同时进行读操作。
        独占锁是一种悲观锁,由于每次访问资源都先加上互斥锁,这限制了并发性,因为读操作并不会影响数据的一致性,而独占锁只允许在同一时间由一个线程读取数据,其他线程必须等待当前线程释放锁才能进行读取。
        共享锁则是一种乐观锁,它放宽了加锁的条件,允许多个线程同时进行读操作

什么是可重入锁

        当一个线程要获取一个被其他线程持有的独占锁时,该线程会被阻塞,那么当一个线程再次获取它自己已经获取的锁时是否会被阻塞呢?如果不被阻塞,那么我们说该锁是可重入的,也就是只要该线程获取了该锁,那么可以无限次数(在高级中我们将知道,严格来说是有限次数)地进入被该锁锁住的代码。

        下面看一个例子,看看在什么情况下会使用可重入锁。

        在如上代码中,调用 helloB 方法前会先获取内置锁,然后打印输出。之后调用helloA方法,在调用前会先去获取内置锁,如果内置锁不是可重入的,那么调用线程将会一直被阻塞。
        实际上,synchronized 内部锁是可重入锁。可重入锁的原理是在锁内部维护一个线程标示,用来标示该锁目前被哪个线程占用,然后关联一个计数器。一开始计数器值为0,说明该锁没有被任何线程占用。当一个线程获取了该锁时,计数器的值会变成1,这时其他线程再来获取该锁时会发现锁的所有者不是自己而被阻塞挂起。
        但是当获取了该锁的线程再次获取锁时发现锁拥有者是自己,就会把计数器值加+1,当释放锁后计数器值-1。当计数器值为0时,锁里面的线程标示被重置为null,这时候被阻塞的线程会被唤醒来竞争获取该锁。

自旋锁

        由于Java中的线程是与操作系统中的线程一一对应的,所以当一个线程在获取锁(比如独占锁)失败后,会被切换到内核状态而被挂起。当该线程获取到锁时又需要将其切换到内核状态而唤醒该线程。而从用户状态切换到内核状态的开销是比较大的,在一定程度上会影响并发性能。自旋锁则是,当前线程在获取锁时,如果发现锁已经被其他线程占有,它不马上阻塞自己,在不放弃CPU使用权的情况下,多次尝试获取(默认次数是10,可以使用 -XX:PreBlockSpinsh参数设置该值),很有可能在后面几次尝试中其他线程已经释放了锁。如果尝试指定的次数后仍没有获取到锁则当前线程才会被阻塞挂起。由此看来自旋锁是使用CPU时间换取线程阻塞与调度的开销,但是很有可能这些CPU时间白白浪费

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2179004.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

[Redis][典型运用][分布式锁]详细讲解

目录 0.什么是分布式锁1.分布式锁的基础实现2.引入过期时间3.引入校验ID4.引入Lua5.引入Watch Dog(看门狗)6.引入Redlock算法7.其他功能 0.什么是分布式锁 在⼀个分布式的系统中,也会涉及到多个节点访问同⼀个公共资源的情况,此时就需要通过锁来做互斥控…

一拖二快充线:单接与双接的多场景应用

在当代社会,随着智能手机等电子设备的普及,充电问题成为了人们关注的焦点。一拖二快充线作为一种创新的充电解决方案,因其便捷性与高效性而受到广泛关注。本文将深入探讨一拖二快充线的定义、原理以及在单接与双接手机场景下的应用&#xff0…

数字图像处理:空间域滤波

1.数字图像处理:空间域滤波 1.1 滤波器核(相关核)与卷积 图像上的邻域计算 线性空间滤波的原理 滤波器核(相关核)是如何得到的? 空间域的卷积 卷积:滤波器核与window中的对应值相乘后所有…

touch命令:创建文件,更新时间戳

一、命令简介 ​touch​ 命令在 Linux 和其他类 Unix 系统中用于创建空白文件或者更新已存在文件的时间戳。如果指定的文件不存在,touch​ 命令会创建一个空白文件;如果文件已经存在,touch​ 命令会更新文件的访问时间和修改时间&#xff0c…

誉天Linux云计算课程学什么?为什么保障就业?

一个IT工程师相当于干了哪些职业? 其中置顶回答生动而形象地描绘道: 一个IT工程师宛如一个超级多面手,相当于——加班狂程序员测试工程师实施工程师网络工程师电工装卸工搬运工超人。 此中酸甜苦辣咸,相信很多小伙伴们都深有体会。除了典…

用开源软件制作出精美的短视频#视频编辑

从前,有一个叫做创意森林的地方,住着各种各样的编辑精灵。一天,视频编辑精灵们发现了一本神秘的论文,里面写满了如何利用前沿的AI技术来提升他们的工作效率。于是,精灵们开始学习使用LLM和LLaVA,像魔法一样…

《企业实战分享 · 开发技术栈选型》

📢 大家好,我是 【战神刘玉栋】,有10多年的研发经验,致力于前后端技术栈的知识沉淀和传播。 💗 🌻 CSDN入驻不久,希望大家多多支持,后续会继续提升文章质量,绝不滥竽充数…

02Cesium中常用的鼠标事件

文章目录 02Cesium中常用的鼠标事件1、左键单击事件2、左键双击事件3、左键按下事件4、左键弹起事件5、中键按下事件6、中键弹起事件7、鼠标移动事件8、右键单击事件9、右键按下事件10、右键弹起事件11、鼠标滚轮事件具体在代码中的应用如下所示 02Cesium中常用的鼠标事件 Ces…

windows下安装rabbitMQ并开通管理界面和允许远程访问

如题,在windows下安装一个rabbitMQ server;然后用浏览器访问其管理界面;由于rabbitMQ的默认账号guest默认只能本机访问,因此需要设置允许其他机器远程访问。这跟mysql的思路很像,默认只能本地访问,要远程访…

《深度学习》OpenCV 图像拼接 拼接原理、参数解析、案例实现

目录 一、图像拼接 1、直接看案例 图1与图2展示: 合并完结果: 2、什么是图像拼接 3、图像拼接步骤 1)加载图像 2)特征点检测与描述 3)特征点匹配 4)图像配准 5)图像变换和拼接 6&am…

鸿蒙harmonyos next flutter通信之BasicMessageChannel获取app版本号

本文将通过BasicMessageChannel获取app版本号,以此来演练BasicMessageChannel用法。 建立channel flutter代码: //建立通道 BasicMessageChannel basicMessageChannel BasicMessageChannel("com.xmg.basicMessageChannel",StringCodec());…

系统工程 > 霍尔三维结构

简介 霍尔三维结构模型是由美国系统工程专家霍尔(A.D.Hall)在1969年提出的一种系统工程方法论,它集中体现了系统工程方法的系统化、综合化、最优化、程序化和标准化等特点 。该模型将系统工程整个活动过程分为前后紧密衔接的七个阶段和七个步…

MySQL的驱动安装

1、下载并安装MySQL 下载地址: 建议在下列框中选择LTS长期支持版本,下载对应的MSI安装文件。 安装完成后,将MySQL的环境bin路径添加到环境变量中。 可以运行MySQL Configurator进行配置,主要设置密码,并初始化。其余…

机器学习课程学习周报十四

机器学习课程学习周报十四 文章目录 机器学习课程学习周报十四摘要Abstract一、机器学习部分1. EM算法与高斯混合模型2. 概率论复习(三) 总结 摘要 本周的学习重点是EM算法与高斯混合模型的应用。单高斯模型无法有效拟合多峰数据分布,因此引…

论文精读:拓扑超导体PdBi2Te4和PdBi2Te5计算

npj Computational Materials (2023) 9:188 ; https://doi.org/10.1038/s41524-023-01144-y 摘要节选 超导拓扑金属(SCTMs)近年来成为一种很有前途的量子计算拓扑超导(TSC)和马约拉纳零模式平台。 本文提出了一种通过将超导单元嵌入到拓扑绝缘体中来设计sctm的策略。还编制了…

二叉树的中序遍历(java)

概述 关于二叉树,我们都不陌生,许多基于递归的问题发起点都是一个二叉树的root节点。对于各种二叉树的问题,我们也是通过dfs进行求解。例如求二叉树的深度、最近公共祖先等 算法分析 关于二叉树的中序遍历,我们都知道应该先访…

无人机之集群路径规划篇

无人机的集群路径规划是一个复杂而重要的任务,它要求为一群无人机设计出既安全又高效的飞行路径,同时考虑到多种约束条件和目标。 一、路径规划的重要性 无人机集群路径规划对于确保无人机能够安全、高效地完成任务至关重要。通过合理的路径规划&#x…

Word办公自动化的一些方法

1.Word部分内容介绍 word本身是带有格式的一种文档,有人说它本质是XML,所以一定要充分利用标记了【样式】的特性来迅速调整【格式】,从而专心编辑文档内容本身。 样式(集) 编号(多级关联样式编号&#xff…

企业如何提升知识产权管理效率?

随着企业规模的扩大和创新活动的增加,知识产权管理日益复杂。有效的知识产权管理不仅能够保护企业的创新成果,还能为企业带来巨大的商业价值。然而,许多企业在知识产权管理方面面临着效率低下的问题,管理效率的提升成为企业亟需解…

XSS | 存储型 XSS 攻击

关注这个漏洞的其他相关笔记:XSS 漏洞 - 学习手册-CSDN博客 0x01:存储型 XSS —— 理论篇 存储型 XSS 又称持久型 XSS,攻击脚本将被永久的存放在目标服务器的数据库或文件中,具有很高的隐蔽性。 常见的攻击方式: 这种…