周杰伦腾格尔晚上八点同时开线上演唱会,究竟是巧合还是刻意安排

news2025/1/10 11:07:08

从日历上面看,2022年11月19日,是一个再平凡不过的日子,不过有了周杰伦和腾格尔的加持,这个平凡的日子也变得不平凡了。

18a454955a2b71aaf8128e3c8627a26e.jpeg


根据腾格尔老师本人透露,他准备在11月19日,在某音平台开启线上演唱会,为歌迷朋友们献上厚礼。

就在同一时间,同为歌坛翘楚的周杰伦,也要在某手平台开启线上演唱会,这让双方的粉丝惊喜不已。

很多人想不明白,为什么两位音乐领域的大明星,都选择在11月19日这一天,开启自己的线上演唱会呢!

e88c624fa8377489cfc3ca03ad006086.jpeg


其实这事并不稀奇,周杰伦选择在今天,开启自己的线上演唱会,主要是长时间没和大家见面。

而腾格尔在今天开启线上演唱会,主要因为他是一个资深球迷,而明天就是卡特尔世界杯的开幕式。

面对四年一届的世界杯,虽然没有咱们的国足参加,但是作为中国足球队的球迷,腾格尔也要献上自己的祝福。

7017ec15c096a0c90fc17a23e3e22104.jpeg


不过在一些人看来,两个人都选择在今天开演唱会,肯定是针锋相对刻意安排,目的就是为了抢夺流量。

有这种想法的人,就完全是以小人之心,度君子之腹了,按照周杰伦和腾格尔的咖位,完全没有必要这样做。

周杰伦是音乐领域的大咖,也代表着新生代的力量,他在娱乐圈的统治力,是很多人都难以撼动的。

37206d334e9d50f4526232dd78311ab0.jpeg


腾格尔老师作为草原上的歌神,也有着庞大的粉丝群体,他和周杰伦短时间内很难分出仲伯。

既然周杰伦和腾格尔两个人,没有去刻意安排各自的演唱会,那就有另外一种可能,这完全是一种无意的巧合。

搞音乐的人都比较细腻,周杰伦和腾格尔在音乐领域都颇有建树,他们的音乐造诣有非常深。

b1bb235909216fb9dfa9b40c6e8d69ff.jpeg


既然两位都是音乐界的翘楚,有时候会心有灵犀一点通,隔座送钩春酒暖,分曹射覆蜡灯红,嗟余听鼓应官去,走马兰台类转蓬的感觉。

只是这样的安排,却苦了喜欢他们的粉丝朋友,毕竟手心手背都是肉,放弃看谁的直播都不甘心。

不过大家也不用迷茫彷徨,喜欢谁就去谁的直播间好了,他们那么大的粉丝群体,也不会差咱们一个两个人。

a66167676b70a2a039f82e6ee225993b.jpeg


只是从情感上面讲,笔者更愿意去腾格尔老师的直播间,毕竟他开启线上演唱会的目的,是为了给世界杯预热。

这些年来,由于中国足球萎靡不振,中国的足球市场也逐渐萎缩,长此以往会带来恶性循环。

如果腾格尔老师能用一场线上演唱会,把中国人心中的热火点燃,也算是为中国足球做出贡献吧!

ffc36786d8054b74a44e4be4d9de4bbf.jpeg


更何况腾格尔老师的线上演唱会,有可能会演唱自己的新歌《遥远的地方》,也让粉丝朋友们多了几分期待。

至于说周杰伦的线上演唱会,毕竟他还非常年轻,来日方长以后还有机会,未来的日子多多支持周董就可以了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/21601.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

智慧实验室解决方案-最新全套文件

智慧实验室解决方案-最新全套文件一、建设背景二、建设架构智慧实验室建设核心目标三、建设方案四、获取 - 智慧实验室全套最新解决方案合集一、建设背景 当前高校和中小学的智慧校园建设正如火如荼地进行中,智慧实验室建设属于“智慧校园”建设的重要组成部分之一…

ctf_BUUCTF_web(1)

文章目录BUUCTF_webSQL注入1. [极客大挑战 2019]EasySQL2. [SUCTF 2019]EasySQL3.[强网杯 2019]随便注4.[极客大挑战 2019]BabySQL5.[BJDCTF2020]Easy MD56.[极客大挑战 2019]HardSQL7.[GXYCTF2019]BabySQli8.[GYCTF2020]Blacklist9.[CISCN2019 华北赛区 Day2 Web1]Hack World1…

面试:HTTP 的长连接和短连接

https://www.cloudflare.com/zh-cn/learning/ddos/syn-flood-ddos-attack/ 一文搞懂 HTTP 的长连接和短连接_文晓武的博客-CSDN博客 1、HTTP 协议与 TCP/IP 协议的关系 HTTP 的长连接和短连接本质上是 TCP 长连接和短连接。HTTP 属于应用层协议,在传输层使用 TCP…

区块链交易明细中各字段的含义

Transaction Hash:标识本次交易的 hashStatus:交易状态Block:7768188 表示本次块高,217034 表示在 7768188 后面又新挖的区块数量,该数值会随着新区块增加而不断增长Timestamp:交易成功的时间戳From&#x…

直流无刷电机(BLDC)转速闭环调速系统及Matlab/Simulink仿真分析

文章目录前言一、转速闭环直流调速系统二、Matlab/Simulink仿真2.1.仿真电路分析2.2.仿真结果分析总结前言 变压调速是直流调速系统的主要调速方法,因此系统的硬件至少包含:可调直流电源和直流电机两部分。可调直流电源多采用直流PWM变换器,…

v-for的用法及key值原理

v-for的用途: (1)关键字: v-for遍历的时候,关键字有两个:in、of:两个关键字没有区别,用哪一个都行; (2)支持对象、数组、数字遍历&#xff1a…

java线程生命周期

如图 java线程的生命周期主要分为 新建: :新建这一刻 他会创建出一个线程对象 这个就是我们通过new线程类 这部操作实现的 当我们通过new出来的线程对象 执行 start方法之后 他就会进入第二个生命周期 就绪: 在这个过程中 他有执行资格 就是他是可以执行线程的程序的 但这个阶…

zk中session的基本原理、create、set、delete命令的使用(重补早期学习记录)

前言:补学习记录,几年前写一半丢草稿箱,突然看到,有强迫症所以补完 一、session基本原理 二、创建节点 create [-s] | [-e] 路径 数据 权限 还是一样的连接zk客户端 ./zkCli.sh 使用help查看命令 我们创建一个父节点,并存入数据 使用get来或者它的数据和状态信息 状态参…

【LeetCode】Day187-分割回文串

题目 131. 分割回文串【中等】 题解 如何判断字符串是回文串? 使用动态规划:f[i][j]代表s[i…j]是否是回文串,则有状态转移方程如下, 有了f[i][j],如何分割回文串? 利用回溯搜索,当s[0…i-1…

Spring参数校验

如何使用 Spring提供了简便的参数校验注解&#xff0c;不需要像以前一样if else去判断了&#xff0c;下面记录一下如何使用注解实现参数的校验 导入坐标 要使用各种注解完成参数的校验&#xff0c;需要导入hibernate-validator坐标以实现 <dependency><groupId>…

[Spring Cloud] nacos安装与使用

✨✨个人主页:沫洺的主页 &#x1f4da;&#x1f4da;系列专栏: &#x1f4d6; JavaWeb专栏&#x1f4d6; JavaSE专栏 &#x1f4d6; Java基础专栏&#x1f4d6;vue3专栏 &#x1f4d6;MyBatis专栏&#x1f4d6;Spring专栏&#x1f4d6;SpringMVC专栏&#x1f4d6;SpringBoot专…

密码学消息鉴别

信息安全 完整性 1.数据完整性&#xff1a;数据未被篡改或损坏。数据是不可否认的&#xff0c;发送方和接收方不能抵赖处理了数据。 2.系统完整性&#xff1a;系统未被非授权使用。 真实性 确认实体是它声明的&#xff0c;适用于用户、进程等等的合法的信息&#xff08;是否真…

LVS-DR模式

文章目录一、LVS-DR集群介绍1、LVS-DR 工作原理2、 数据包流向分析3、LVS-DR 模式的特点4、LVS-DR中的ARP问题4.1 问题一4.2问题二二、构建LVS-DR集群的步骤实验环境准备&#xff1a;1、配置负载调度器&#xff08;192.168.2.66&#xff09;1.1 配置虚拟 IP 地址&#xff08;VI…

HTML+CSS+JS网页设计期末课程大作业—— 艺术官网17页(包含登陆注册)

⛵ 源码获取 文末联系 ✈ Web前端开发技术 描述 网页设计题材&#xff0c;DIVCSS 布局制作,HTMLCSS网页设计期末课程大作业 | 公司官网网站 | 企业官网 | 酒店官网 | 等网站的设计与制 | HTML期末大学生网页设计作业&#xff0c;Web大学生网页 HTML&#xff1a;结构 CSS&#…

力扣(LeetCode)22. 括号生成(C++)

回溯 括号合法的性质&#xff1a; 任意前缀的左括号数大于右括号数左括号和右括号的数量相等。 根据性质 &#xff0c; 写递归体 。 class Solution { public:vector<string> ans;vector<string> generateParenthesis(int n) {dfs(n,0,0,"");return …

Mosaic数据增强

paper&#xff1a;YOLOv4: Optimal Speed and Accuracy of Object Detection mosaic data augmentation最早是在YOLO v4的文章中提出的&#xff0c;但其实在ultralytics-YOLOv3中就已经实现了。具体就是将4张样本拼接成一张图&#xff0c;具有以下优点&#xff1a;&#xff08…

C++string—常用接口介绍+模拟实现+习题讲解

如果调试一个程序让你很苦恼&#xff0c;千万不要放弃&#xff0c;成功永远在拐角之后&#xff0c;除非你走到拐角&#xff0c;否则你永远不知道你离他多远&#xff0c;所以&#xff0c;请记住&#xff0c;坚持不懈&#xff0c;直到成功。 目录 前言 1.string类的常用接口 1.1s…

c++提高篇——模板(下)

c提高篇——模板&#xff08;下&#xff09;一、类模板二、类模板与函数模板区别三、类模板中成员函数创建时机四、类模板对象做函数参数一、类模板 类模板可以建立一个通用类&#xff0c;类中的成员数据类型可以不具体制定&#xff0c;用一个虚拟的类型来代表。 类模板的语法…

周赛补题

leetcode &#xff1a; 第一题https://leetcode.cn/problems/number-of-unequal-triplets-in-array/可以直接暴力 class Solution { public:int unequalTriplets(vector<int>& nums) {int sum 0;int n nums.size();for(int i 0; i < n; i ){for(int j i …

kmp算法记录

看了如何更好地理解和掌握 KMP 算法?之后&#xff0c;做的整理 相关知识 尽管普通模式匹配的时间复杂度是O(mn)&#xff0c;KMP 算法的时间复杂度是O(mn)&#xff0c;但在一般情况下&#xff0c;普通模式匹配的实际执行时间近似为O(m n)&#xff0c;因此至今仍被采用。KMP算法…