目录标题
- 幂等不能解决接口超时吗?
- 幂等的重要性
- 什么是幂等?
- 为什么需要幂等?
- 接口超时了,到底如何处理?
- 如何设计幂等?
- 幂等设计的基本流程
- 实现幂等的8种方案
- 1.select+insert+主键/唯一索引冲突(常用)
- 2.直接insert + 主键/唯一索引冲突
- 3.状态机幂等(常用)
- 4.抽取防重表
- 5.token令牌(前后端交互常用)
- 6.悲观锁(如select for update)(不用)
- 7.乐观锁
- 8.分布式锁(分布式环境下常用)
- HTTP的幂等
- GET方法
- HEAD 方法
- OPTIONS方法
- DELETE方法
- POST 方法
- PUT 方法
幂等不能解决接口超时吗?
处理接口超时问题需要综合考虑多个方面,包括设置合理的超时时间、实现重试机制、引入熔断器、加强监控和报警、记录详细的日志、实施限流和降级策略、采用异步处理方式、优化代码和逻辑、合理管理资源以及使用缓存和负载均衡等。通过这些措施,可以有效提升系统的稳定性和可靠性。同时,确保操作的幂等性是处理重试问题的关键,可以避免因重试导致的数据不一致。
本篇就主要讲解超时重试带来的幂等性问题。幂等性是处理分布式系统中接口超时和重试问题的一个重要概念,但它本身并不直接解决超时问题。幂等性是指一个操作可以多次执行而不会改变结果的状态。在处理超时和重试时,确保操作的幂等性可以避免重复操作带来的副作用。
幂等的重要性
当前互联网的系统几乎都是解耦隔离后,会存在各个不同系统的相互远程调用。调用远程服务会有三个状态:成功,失败,或者超时。前两者都是明确的状态,而超时则是未知状态。我们转账超时的时候,如果下游转账系统做好幂等控制,我们发起重试,那即可以保证转账正常进行,又可以保证不会多转一笔。所以掌握幂的用法非常重要!
什么是幂等?
幂等是一个数学与计算机科学概念。
在数学中,幂等用函数表达式就是:f(x) = f(f(x))。比如求绝对值的函数,就是幂等的,abs(x) = abs(abs(x))。
计算机科学中,幂等表示一次和多次请求某一个资源应该具有同样的副作用,或者说,多次请求所产生的影响与一次请求执行的影响效果相同。
为什么需要幂等?
举个例子:
我们开发一个转账功能,假设我们调用下游接口超时了。一般情况下,超时可能是网络传输丢包的问题,也可能是请求时没送到,还有可能是请求到了,返回结果却丢了。这时候我们是否可以重试呢?如果重试的话,是否会多转了一笔钱呢?
转账超时
当前互联网的系统几乎都是解耦隔离后,会存在各个不同系统的相互远程调用。调用远程服务会有三个状态:成功,失败,或者超时。前两者都是明确的状态,而超时则是未知状态。我们转账超时的时候,如果下游转账系统做好幂等控制,我们发起重试,那即可以保证转账正常进行,又可以保证不会多转一笔。
其实除了转账这个例子,日常开发中,还有很多很多例子需要考虑幂等。比如:
MQ(消息中间件)消费者读取消息时,有可能会读取到重复消息。(重复消费)
比如提交form表单时,如果快速点击提交按钮,可能产生了两条一样的数据(前端重复提交)
接口超时了,到底如何处理?
如果我们调用下游接口超时了,我们应该怎么处理呢?
有两种方案处理:
- 方案一:就是下游系统提供一个对应的查询接口。如果接口超时了,先查下对应的记录,如果查到是成功,就走成功流程,如果是失败,就按失败处理。
拿我们的转账例子来说,转账系统提供一个查询转账记录的接口,如果渠道系统调用转账系统超时时,渠道系统先去查询一下这笔记录,看下这笔转账记录成功还是失败,如果成功就走成功流程,失败再重试发起转账。
- 方案二:下游接口支持幂等,上游系统如果调用超时,发起重试即可。
两种方案都是挺不错的,但是如果是MQ重复消费的场景,方案一处理并不是很妥,所以,我们还是要求下游系统对外接口支持幂等。
如何设计幂等?
既然这么多场景需要考虑幂等,那我们如何设计幂等呢?
幂等意味着一条请求的唯一性。不管是你哪个方案去设计幂等,都需要一个全局唯一的ID,去标记这个请求是独一无二的。
- 如果你是利用唯一索引控制幂等,那唯一索引是唯一的
- 如果你是利用数据库主键控制幂等,那主键是唯一的
- 如果你是悲观锁的方式,底层标记还是全局唯一的ID
全局的唯一性ID
全局唯一性ID,我们怎么去生成呢?你可以回想下,数据库主键Id怎么生成的呢?
是的,我们可以使用UUID,但是UUID的缺点比较明显,它字符串占用的空间比较大,生成的ID过于随机,可读性差,而且没有递增。
我们还可以使用雪花算法(Snowflake) 生成唯一性ID。
雪花算法是一种生成分布式全局唯一ID的算法,生成的ID称为Snowflake IDs。这种算法由Twitter创建,并用于推文的ID。
一个Snowflake ID有64位。
- 第1位:Java中long的最高位是符号位代表正负,正数是0,负数是1,一般生成ID都为正数,所以默认为0。
- 接下来前41位是时间戳,表示了自选定的时期以来的毫秒数。
- 接下来的10位代表计算机ID,防止冲突。
- 其余12位代表每台机器上生成ID的序列号,这允许在同一毫秒内创建多个Snowflake ID。
当然,全局唯一性的ID,还可以使用百度的Uidgenerator,或者美团的Leaf。
幂等设计的基本流程
幂等处理的过程,说到底其实就是过滤一下已经收到的请求,当然,请求一定要有一个全局唯一的ID标记哈。然后,怎么判断请求是否之前收到过呢?把请求储存起来,收到请求时,先查下存储记录,记录存在就返回上次的结果,不存在就处理请求。
一般的幂等处理就是这样啦,如下:
实现幂等的8种方案
幂等设计的基本流程都是类似的,我们简简单单来过一下幂等实现的8中方案哈
1.select+insert+主键/唯一索引冲突(常用)
为什么前面已经select查询了,还需要try…catch…捕获重复异常呢?
是因为高并发场景下,两个请求去select的时候,可能都没查到,然后都走到insert的地方啦。
当然,用唯一索引代替数据库主键也是可以的哈,都是全局唯一的ID即可。
2.直接insert + 主键/唯一索引冲突
1方案中都会先查一下流水表的交易请求,判断是否存在,然后不存在再插入请求记录。如果重复请求的概率比较低的话,我们可以直接插入请求,利用主键/唯一索引冲突,去判断是重复请求。
大家别搞混哈,防重和幂等设计其实是有区别的。防重主要为了避免产生重复数据,把重复请求拦截下来即可。而幂等设计除了拦截已经处理的请求,还要求每次相同的请求都返回一样的效果。不过呢,很多时候,它们的处理流程可以是类似的。
3.状态机幂等(常用)
很多业务表,都是有状态的,比如转账流水表,就会有0-待处理,1-处理中、2-成功、3-失败状态。转账流水更新的时候,都会涉及流水状态更新,即涉及状态机 (即状态变更图)。我们可以利用状态机实现幂等,一起来看下它是怎么实现的。
比如转账成功后,把处理中的转账流水更新为成功状态,SQL这么写:
update transfr_flow set status=2 where biz_seq=‘666’ and status=1;
简要流程图如下:
状态机是怎么实现幂等的呢?
- 第1次请求来时,bizSeq流水号是 666,该流水的状态是处理中,值是 1,要更新为2-成功的状态,所以该update语句可以正常更新数据,sql执行结果的影响行数是1,流水状态最后变成了2。
- 第2请求也过来了,如果它的流水号还是 666,因为该流水状态已经2-成功的状态了,所以更新结果是0,不会再处理业务逻辑,接口直接返回。
4.抽取防重表
1,2方案都是建立在业务流水表上bizSeq的唯一性上。很多时候,我们业务表唯一流水号希望后端系统生成,又或者我们希望防重功能与业务表分隔开来,这时候我们可以单独搞个防重表。当然防重表也是利用主键/索引的唯一性,如果插入防重表冲突即直接返回成功,如果插入成功,即去处理请求。
5.token令牌(前后端交互常用)
token 令牌方案一般包括两个请求阶段:
- 客户端请求申请获取token,服务端生成token返回
- 客户端带着token请求,服务端校验token
流程图如下:
1、客户端发起请求,申请获取token。
2、服务端生成全局唯一的token,保存到redis中(一般会设置一个过期时间),然后返回给客户端。
3、客户端带着token,发起请求。
4、服务端去redis确认token是否存在,一般用 redis.del(token)的方式,如果存在会删除成功,即处理业务逻辑,5、如果删除失败不处理业务逻辑,直接返回结果。
6.悲观锁(如select for update)(不用)
什么是悲观锁?
通俗点讲就是很悲观,每次去操作数据时,都觉得别人中途会修改,所以每次在拿数据的时候都会上锁。官方点讲就是,共享资源每次只给一个线程使用,其它线程阻塞,用完后再把资源转让给其它线程。
悲观锁如何控制幂等的呢?就是加锁呀,一般配合事务来实现。
举个更新订单的业务场景:
假设先查出订单,如果查到的是处理中状态,就处理完业务,再然后更新订单状态为完成。如果查到订单,并且是不是处理中的状态,则直接返回
整体的伪代码如下:
begin; # 1.开始事务
select * from order where order_id='666' # 查询订单,判断状态
if(status !=处理中){
//非处理中状态,直接返回;
return ;
}
## 处理业务逻辑
update order set status='完成' where order_id='666' # 更新完成
commit; # 5.提交事务
这种场景是非原子操作的,在高并发环境下,可能会造成一个业务被执行两次的问题:
当一个请求A在执行中时,而另一个请求B也开始状态判断的操作。因为请求A还未来得及更改状态,所以请求B也能执行成功,这就导致一个业务被执行了两次。
可以使用数据库悲观锁(select …for update)解决这个问题.
begin; # 1.开始事务
select * from order where order_id='666' for update # 查询订单,判断状态,锁住这条记录
if(status !=处理中){
//非处理中状态,直接返回;
return ;
}
## 处理业务逻辑
update order set status='完成' where order_id='666' # 更新完成
commit; # 5.提交事务
这里面order_id需要是索引或主键哈,要锁住这条记录就好,如果不是索引或者主键,会锁表的!
悲观锁在同一事务操作过程中,锁住了一行数据。别的请求过来只能等待,如果当前事务耗时比较长,就很影响接口性能。所以一般不建议用悲观锁做这个事情。
7.乐观锁
悲观锁有性能问题,可以试下乐观锁。
什么是乐观锁?
乐观锁在操作数据时,则非常乐观,认为别人不会同时在修改数据,因此乐观锁不会上锁。只是在执行更新的时候判断一下,在此期间别人是否修改了数据。
怎样实现乐观锁呢?
就是给表的加多一列version版本号,每次更新记录version都升级一下(version=version+1)。具体流程就是先查出当前的版本号version,然后去更新修改数据时,确认下是不是刚刚查出的版本号,如果是才执行更新
比如,我们更新前,先查下数据,查出的版本号是version =1
select order_id,version from order where order_id='666';
然后使用version =1和订单Id一起作为条件,再去更新
update order set version = version +1,status='P' where order_id='666' and version =1
最后更新成功,才可以处理业务逻辑,如果更新失败,默认为重复请求,直接返回。
流程图如下:
为什么版本号建议自增的呢?
因为乐观锁存在ABA的问题,如果version版本一直是自增的就不会出现ABA的情况啦。
8.分布式锁(分布式环境下常用)
分布式锁实现幂等性的逻辑就是,请求过来时,先去尝试获得分布式锁,如果获得成功,就执行业务逻辑,反之获取失败的话,就舍弃请求直接返回成功。执行流程如下图所示:
分布式锁可以使用Redis,也可以使用ZooKeeper,不过还是Redis相对好点,因为较轻量级。
Redis分布式锁,可以使用命令SET EX PX NX + 唯一流水号实现,分布式锁的key必须为业务的唯一标识哈
Redis执行设置key的动作时,要设置过期时间哈,这个过期时间不能太短,太短拦截不了重复请求,也不能设置太长,会占存储空间。
HTTP的幂等
我们的接口,一般都是基于http的,所以我们再来聊聊Http的幂等吧。HTTP 请求方法主要有以下这几种,我们看下各个接口是否都是幂等的。
GET方法
HTTP 的GET方法用于获取资源,可以类比于数据库的select查询,不应该有副作用,所以是幂等的。它不会改变资源的状态,不论你调用一次还是调用多次,效果一样的,都没有副作用。
如果你的GET方法是获取最近最新的新闻,不同时间点调用,返回的资源内容虽然不一样,但是最终对资源本质是没有影响的哈,所以还是幂等的。
HEAD 方法
HEAD 方法与 GET 方法类似,但只返回响应头,不返回响应体。同样不会改变服务器状态。主要区别是HEAD不含有呈现数据,而仅仅是HTTP的头信息,所以它也是幂等的。如果想判断某个资源是否存在,很多人会使用GET,实际上用HEAD则更加恰当。即HEAD方法通常用来做探活使用。
OPTIONS方法
HTTP OPTIONS 主要用于获取当前URL所支持的方法,也是有点像查询,因此也是幂等的。
OPTIONS 方法用于获取目标资源所支持的通信选项。它不会改变服务器状态。
DELETE方法
HTTP DELETE 方法用于删除资源,它是的幂等的。比如我们要删除id=666的帖子,一次执行和多次执行,影响的效果是一样的呢。
这个具体只能是指定条件删除!
POST 方法
HTTP POST 方法用于创建资源,可以类比于提交信息,显然一次和多次提交是有副作用,执行效果是不一样的,不满足幂等性。
比如:POST http://www.tianluo.com/articles的语义是在http://www.tianluo.com/articles下创建一篇帖子,HTTP 响应中应包含帖子的创建状态以及帖子的 URI。两次相同的POST请求会在服务器端创建两份资源,它们具有不同的 URI;所以,POST方法不具备幂等性。
PUT 方法
在大多数情况下,PUT 方法是幂等的,因为它用于更新或替换指定资源的全部内容。无论执行多少次相同的 PUT 请求,最终结果都应该是相同的。然而,在某些特定的情况下,PUT 方法可能会表现出非幂等的行为。以下是一些可能导致 PUT 方法不幂等的情况:
在大多数情况下,PUT
方法是幂等的,因为它用于更新或替换指定资源的全部内容。无论执行多少次相同的 PUT
请求,最终结果都应该是相同的。然而,在某些特定的情况下,PUT
方法可能会表现出非幂等的行为。以下是一些可能导致 PUT
方法不幂等的情况:
- 依赖外部状态
如果PUT
请求的结果依赖于外部状态或系统中的其他数据,那么它可能不是幂等的。
示例
假设有一个计数器服务,每次 PUT
请求都会增加一个计数器的值:
PUT /counter
Content-Type: application/json
{
"value": 1
}
在这个例子中,每次执行 PUT
请求都会将计数器的值增加 1。因此,多次执行相同的请求会导致不同的结果,这使得 PUT
不再是幂等的。
- 包含时间戳或版本号
如果PUT
请求中包含时间戳或版本号,并且这些信息会影响服务器的状态,那么PUT
可能不是幂等的。
示例
假设有一个资源,其内容包括一个时间戳字段:
PUT /resource/123
Content-Type: application/json
{
"name": "John Doe",
"timestamp": "2024-09-22T12:00:00Z"
}
每次 PUT
请求的时间戳不同,即使内容相同,服务器也可能将其视为不同的更新,从而导致非幂等行为。
- 包含自增字段
如果PUT
请求中包含自增字段(如 ID 或序列号),并且这些字段在服务器端生成,那么PUT
可能不是幂等的。
示例
假设有一个资源,其中包含一个自增的 ID 字段:
PUT /resource/123
Content-Type: application/json
{
"name": "John Doe",
"id": 123
}
如果 id
是在服务器端生成的,并且每次 PUT
请求都会生成一个新的 ID,那么多次执行相同的 PUT
请求会导致不同的结果。
- 并发更新
在并发环境中,多个客户端同时对同一个资源进行PUT
操作时,可能会导致非幂等的行为。
示例
假设有两个客户端同时尝试更新同一个资源:
- 客户端 A 发送
PUT
请求,更新资源为{ "name": "John Doe" }
。 - 客户端 B 在客户端 A 的请求处理完成之前发送
PUT
请求,更新资源为{ "name": "Jane Doe" }
。
在这种情况下,最终资源的状态取决于哪个请求先被处理,这可能导致非幂等的行为。
- 副作用
如果PUT
请求有副作用,例如触发其他操作或事件,那么它可能不是幂等的。
示例
假设 PUT
请求不仅更新资源,还触发了一个通知事件:
PUT /resource/123
Content-Type: application/json
{
"name": "John Doe"
}
每次执行 PUT
请求时,都会触发一个通知事件,即使资源内容没有变化。这种情况下,PUT
请求不再是幂等的。
虽然 PUT
方法在标准定义下是幂等的,但在实际应用中,由于上述情况的存在,PUT
请求可能会表现出非幂等的行为。为了确保 PUT
方法的幂等性,应该避免依赖外部状态、时间戳、自增字段和副作用,并且在并发环境下使用适当的锁机制来防止竞态条件。通过这些措施,可以确保 PUT
方法在分布式系统中的可靠性和一致性。