【机器学习】广义线性模型和一般线性模型的联系和区别以及如何选择合适的链接函数

news2025/1/10 11:14:36

引言

广义线性模型(Generalized Linear Models,简称GLM)和一般线性模型(通常指的是线性回归模型)都是统计建模中常用的工具,但它们在假设、适用范围和模型结构上有所不同

文章目录

  • 引言
  • 一、广义线性模型和一般线性模型的联系和区别
    • 1.1 联系
      • 1.1.1 线性预测器
      • 1.1.2 参数估计
      • 1.1.3 统计推断
    • 1.2 区别
      • 1.2.1 响应变量的分布
      • 1.2.2 链接函数
      • 1.2.3 方差结构
      • 1.2.4 应用范围
      • 1.2.5 模型形式
      • 1.2.6 假设检验
      • 1.2.7 总结
  • 二、广义线性模型的常见链接函数
    • 2.1 恒等链接函数(Identity Link)
    • 2.2 对数链接函数(Log Link)
    • 2.3 逆链接函数(Inverse Link)
    • 2.4 平方根链接函数(Square Root Link)
    • 2.5 logit链接函数(Logit Link)
    • 2.6 probit链接函数(Probit Link)
    • 2.7 互补双曲正切链接函数(Complementary Log-Log Link)
    • 2.8 幂链接函数(Power Link)
    • 2.9 总结
  • 三、如何选择合适的链接函数
    • 3.1 理解响应变量的分布
    • 3.2 考虑数据的特点
    • 3.3 选择标准
      • 3.3.1 对于连续响应变量
      • 3.3.2 对于二元响应变量(0-1数据)
      • 3.3.3 对于计数数据
      • 3.3.4 对于多分类响应变量
    • 3.4 模型拟合和诊断
    • 3.5. 实践经验
    • 3.6 总结
  • 四、判断哪个链接函数更适合数据
    • 4.1 理论依据
    • 4.2 模型拟合
    • 4.3 诊断检验
    • 4.4 实际表现
    • 4.5 实践经验
    • 4.6 具体步骤
    • 总结

在这里插入图片描述

一、广义线性模型和一般线性模型的联系和区别

1.1 联系

1.1.1 线性预测器

在两种模型中,预测变量(解释变量)的线性组合都是模型的核心部分。这个线性组合被称为线性预测器

1.1.2 参数估计

GLM和一般线性模型通常都使用最大似然估计(MLE)或其他优化方法来估计模型参数

1.1.3 统计推断

两者都提供了一系列统计推断工具,如参数估计、假设检验和置信区间

1.2 区别

1.2.1 响应变量的分布

  • 一般线性模型:假设响应变量是连续的,并且遵循正态分布
  • 广义线性模型:允许响应变量遵循不同的分布,如二项分布、泊松分布、伽马分布等

1.2.2 链接函数

  • 一般线性模型:使用恒等函数作为链接函数,即直接将线性预测器作为响应变量的期望值
  • 广义线性模型:引入了链接函数,它将线性预测器与响应变量的期望值联系起来。链接函数可以是恒等函数、logit函数、log函数等,取决于响应变量的分布

1.2.3 方差结构

  • 一般线性模型:假设响应变量的方差是恒定的
  • 广义线性模型:允许响应变量的方差依赖于其均值,这是通过方差函数来实现的

1.2.4 应用范围

  • 一般线性模型:主要用于连续响应变量的回归分析
  • 广义线性模型:更灵活,可以用于连续、二元、计数和多分类数据的建模

1.2.5 模型形式

  • 一般线性模型:形式较为简单,通常表示为 Y = β 0 + β 1 X 1 + β 2 X 2 + ⋯ + ϵ Y = \beta_0 + \beta_1X_1 + \beta_2X_2 + \cdots + \epsilon Y=β0+β1X1+β2X2++ϵ其中 ϵ \epsilon ϵ 是误差项
  • 广义线性模型:形式更为复杂,通常表示为 g ( E [ Y ] ) = β 0 + β 1 X 1 + β 2 X 2 + ⋯ g(E[Y]) = \beta_0 + \beta_1X_1 + \beta_2X_2 + \cdots g(E[Y])=β0+β1X1+β2X2+其中 g ( ⋅ ) g(\cdot) g()是链接函数, E [ Y ] E[Y] E[Y]是响应变量的期望值

1.2.6 假设检验

  • 一般线性模型:通常使用t检验和F检验
  • 广义线性模型:使用似然比检验、沃尔德检验等

1.2.7 总结

总结来说,广义线性模型是线性模型的推广,它通过引入链接函数和允许不同类型的响应变量分布,扩展了线性模型的应用范围和灵活性。一般线性模型可以看作是广义线性模型在特定条件下的特例,即当响应变量是连续且正态分布,链接函数是恒等函数时

二、广义线性模型的常见链接函数

广义线性模型(GLM)中的链接函数(link function)是将线性预测器(线性组合的预测变量)与响应变量的期望值联系起来的函数

以下是一些在广义线性模型中常见的链接函数:

2.1 恒等链接函数(Identity Link)

  • 公式: g ( μ ) = μ g(\mu) = \mu g(μ)=μ
  • 使用场景:当响应变量是连续且正态分布时,即传统线性回归模型

2.2 对数链接函数(Log Link)

  • 公式: g ( μ ) = log ⁡ ( μ ) g(\mu) = \log(\mu) g(μ)=log(μ)
  • 使用场景:响应变量是正的连续数据,并且其分布的均值和方差有关系,如泊松回归

2.3 逆链接函数(Inverse Link)

  • 公式: g ( μ ) = 1 μ g(\mu) = \frac{1}{\mu} g(μ)=μ1
  • 使用场景:适用于均值和方差的倒数有关系的数据,如伽马分布

2.4 平方根链接函数(Square Root Link)

  • 公式: g ( μ ) = μ g(\mu) = \sqrt{\mu} g(μ)=μ
  • 使用场景:当响应变量的方差随均值的增加而增加时,如负二项回归

2.5 logit链接函数(Logit Link)

  • 公式: g ( μ ) = log ⁡ ( μ 1 − μ ) g(\mu) = \log\left(\frac{\mu}{1-\mu}\right) g(μ)=log(1μμ)
  • 使用场景:响应变量是二进制(0-1)数据,用于逻辑回归

2.6 probit链接函数(Probit Link)

  • 公式: g ( μ ) = Φ − 1 ( μ ) g(\mu) = \Phi^{-1}(\mu) g(μ)=Φ1(μ)
  • 使用场景:与logit类似,但使用标准正态分布的累积分布函数的逆,适用于二进制数据

2.7 互补双曲正切链接函数(Complementary Log-Log Link)

  • 公式: g ( μ ) = log ⁡ ( − log ⁡ ( 1 − μ ) ) g(\mu) = \log(-\log(1-\mu)) g(μ)=log(log(1μ))
  • 使用场景:用于二元响应变量,特别是当事件发生的概率非常低时

2.8 幂链接函数(Power Link)

  • 公式: g ( μ ) = μ k g(\mu) = \mu^k g(μ)=μk
  • 使用场景:通过选择不同的k值,可以适应不同的数据结构

2.9 总结

这些链接函数的选择取决于响应变量的分布类型和数据的特性。不同的链接函数会导致不同的模型行为,因此选择合适的链接函数对于广义线性模型的正确拟合和应用至关重要

三、如何选择合适的链接函数

选择合适的链接函数是建立广义线性模型(GLM)的关键步骤之一

3.1 理解响应变量的分布

  • 类型:首先确定响应变量的类型(连续、二元、计数或多分类)
  • 分布:了解响应变量的分布特性,例如是否正态分布、二项分布、泊松分布等

3.2 考虑数据的特点

  • 均值-方差关系:检查响应变量的均值和方差之间的关系。如果方差随着均值的增加而增加,可能需要选择能够反映这种关系的链接函数
  • 数据范围:确保链接函数适用于响应变量的数据范围,例如,对于非负的计数数据,不能使用恒等链接函数

3.3 选择标准

3.3.1 对于连续响应变量

  • 恒等链接:如果响应变量是正态分布的,可以使用恒等链接

3.3.2 对于二元响应变量(0-1数据)

  • Logit链接:当事件发生的概率不是极端值(既不太接近0也不太接近1)时,logit链接是常用的选择
  • Probit链接:如果假设响应变量遵循标准正态分布,可以使用probit链接
  • Complementary log-log链接:当事件发生的概率非常低时,这个链接函数可能更合适

3.3.3 对于计数数据

  • Log链接:如果响应变量是泊松分布的,log链接是标准选择
  • Identity链接:如果数据是过度分散的泊松数据,可以考虑使用恒等链接

3.3.4 对于多分类响应变量

  • 多项式logit:对于无序的多分类响应变量,可以使用多项式logit(也称为softmax)链接
  • 有序logit:对于有序的多分类响应变量,可以使用有序logit链接

3.4 模型拟合和诊断

  • 拟合优度:使用不同的链接函数拟合模型,并比较它们的拟合优度统计量,如AIC、BIC等
  • 残差分析:检查模型的残差是否满足假设,如是否独立、同方差等

3.5. 实践经验

  • 领域知识:考虑领域内的经验和惯例,某些领域可能有常用的链接函数
  • 文献回顾:查阅相关文献,了解在类似研究中使用的链接函数

3.6 总结

选择合适的链接函数需要综合考虑响应变量的分布、数据的特点、模型的拟合优度以及领域知识。通常,这需要通过尝试不同的链接函数并评估其性能来完成

四、判断哪个链接函数更适合数据

4.1 理论依据

  • 响应变量分布:首先,根据响应变量的类型和分布选择理论上合适的链接函数。例如,对于二元数据通常使用logit或probit链接,对于计数数据通常使用log链接
  • 均值-方差关系:考虑响应变量的均值和方差之间的关系,选择能够正确描述这种关系的链接函数

4.2 模型拟合

  • 拟合统计量:使用不同的链接函数拟合模型,并比较它们的拟合统计量,如AIC(赤池信息量准则)、BIC(贝叶斯信息量准则)等。通常,AIC和BIC值较低的模型更优
  • 残差分析:检查模型的残差是否满足假设,如是否独立、同方差等。残差分析可以帮助识别模型的不当之处

4.3 诊断检验

  • 似然比检验:可以通过似然比检验来比较不同链接函数模型的拟合优度
  • 链接函数假设检验:某些统计软件允许对链接函数的假设进行检验,例如检验log链接函数是否适用于泊松数据

4.4 实际表现

  • 预测准确性:使用交叉验证等方法评估不同模型的预测准确性。一个好的模型应该能够准确地预测未知数据
  • 模型解释性:考虑模型的解释性。有时一个稍微不那么精确但更容易解释的模型可能更受欢迎

4.5 实践经验

  • 领域知识:考虑领域内的经验和惯例。某些领域可能有常用的链接函数
  • 文献回顾:查阅相关文献,了解在类似研究中使用的链接函数

4.6 具体步骤

  1. 数据探索:分析响应变量的分布和均值-方差关系
  2. 初步模型:基于理论依据选择几个可能的链接函数,拟合初步模型
  3. 模型比较:使用拟合统计量和残差分析比较这些模型
  4. 选择模型:基于上述比较,选择表现最好的模型
  5. 验证模型:使用独立的测试集或交叉验证来验证所选模型的预测能力

总结

通过这些步骤,可以系统地评估和选择最适合数据的链接函数。需要注意的是,没有绝对的规则来决定哪个链接函数最好,这通常取决于数据的具体情况和建模目的

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2085165.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

黑马程序员Python机器学习|1机器学习概述

一 人工智能概述 1.机器学习和人工智能,深度学习的关系 2.机器学习可以做什么 翻译,智能客服。 二 什么是机器学习 1.机器学习的定义 从数据中学习,学习后得出的结论是模型(规律),通过这个规律去解决问题&a…

网络安全教程初级简介

随着技术的发展和信息池的增加,信息系统迫切需要建立网络安全措施,以保护输入这些系统的信息。网络安全是任何组织(从小型初创公司到大型跨国组织)的必备条件。 网络安全包括一系列技术、流程和实践,用于保护网络、设…

测试面试题,自动化测试与性能测试篇(附答案)

本系列文章总结归纳了一些软件测试工程师常见的面试题,主要来源于个人面试遇到的、网络搜集(完善)、工作日常讨论等,分为以下十个部分,供大家参考。如有错误的地方,欢迎指正。有更多的面试题或面试中遇到的…

直播电商如何实现精细化运营,破除流量互卷的困境?

在当今电商行业的激烈竞争中,流量的获取与维持已成为品牌和商家关注的焦点。然而,随着市场逐渐饱和,流量成本不断攀升,传统的流量获取方式已不再可持续,精细化运营才是电商企业脱颖而出的关键。 本文将深入探讨电商行…

聚类算法k-means(手撕和调用skl)

定义 K均值聚类(k-means clustering)算法是一种常用的、基于原型的聚类算法,简单、直观、高效。其步骤为: 第一步:根据事先已知的聚类数,随机选择若干样本作为聚类中心,计算每个样本与每个聚类…

大数据及人工智能产品应该如何测试?

当今社会,人工智能的发展非常快,自从2016年AlphaGo战胜了世界围棋冠军李世石之后,人工智能的发展,特别是以深度学习为代表的人工智能的发展到了一个高速发展的阶段。 现在人工智能的发展已经渗透到了我们生活的方方面面&#xff…

如何对 PDF 进行密码保护

保护机密文件非常关键。对 PDF 进行密码保护的策略是在未经授权的访问时增加一层安全保护。在处理高度机密的文档或个人数据时,使用密码保护它们是一个好主意。 也就是说,如果您担心如何在笔记本电脑和台式机上使用密码保护 PDF, 以及您是否…

深入浅出通信原理 | 单位冲激响应和时域卷积定理

微信公众号上线,搜索公众号小灰灰的FPGA,关注可获取相关源码,定期更新有关FPGA的项目以及开源项目源码,包括但不限于各类检测芯片驱动、低速接口驱动、高速接口驱动、数据信号处理、图像处理以及AXI总线等 本节目录 一、单位冲激响应 1、离…

rpm安装出现警告: 密钥 ID f4a80eb5: NOKEY的解决办法

当我们使用rpm安装时有时会出现警告:/mnt/Packages/ethtool-4.8-9.el7.x86_64.rpm: 头V3 RSA/SHA256 Signature, 密钥 ID f4a80eb5: NOKEY 这是因为各个软件之间总会存在一些依赖关系,所以才会发出警告,这时候我们只需要在后面加上"–…

C++面向对象高级开发A

一、概述 目标:培养正规、大气的编程习惯;学习面向对象设计 Object Based(基于对象):以良好的方式编写Cclass class without pointer members【示例:Complex类】class with pointer members【示例&#xff…

挂个人-CSDN Java优秀内容博主rundreamsFly抄袭

事件起因 今天点开自己的CSDN博客,发现给我推了一篇文章抄袭我自己昨天18点发的文章。 就是这篇,一字不差,博主昵称是:rundreamsFly,账号是rundreams。 抄袭者文章 发布于2024-8-26 19:37:41秒,比我发布…

C语言穿墙迷宫

目录 开头程序程序的流程图程序游玩的效果下一篇博客要说的东西 开头 大家好&#xff0c;我叫这是我58。 程序 #define _CRT_SECURE_NO_WARNINGS 1 #include <stdio.h> #include <stdlib.h> #include <time.h> #include <Windows.h> void printmaze…

Axure团队协作功能详解:从创建到管理的全流程

Axure RP 支持团队协作&#xff0c;通过创建团队项目&#xff0c;多个团队成员可以同时在同一个项目上进行编辑和管理。以下是使用 Axure 进行团队协作的详细步骤&#xff1a; Axure 使用地址 1. 创建团队项目 打开 Axure RP&#xff0c;并在菜单栏中选择 “Team” > “Cr…

【6678专题】-点亮LED灯(寄存器方式)

本章需要参考的资料为 《General Purpose Input Output (GPIO) User Guide.pdf》&#xff0c;具体在创龙资料文件夹目录下D:\JYTL\12DSP_FPGA\08_文档\创龙\TL6678ZH-EVM_V1.5\TL6678ZH-EVM_V1.5\6-开发参考资料\数据手册\核心板元器件\DSP\Technical Reference Manual 《Multi…

CentOS 安装 NVIDIA 相关软件包时出现依赖问题

CentOS 安装 NVIDIA 相关软件包时出现依赖问题 1 CentOS 安装 NVIDIA 相关软件包时报错如下2 解决方法 1 CentOS 安装 NVIDIA 相关软件包时报错如下 Error: Package: 3:kmod-nvidia-latest-dkms-550.90.07-1.el7.x86_64 (cuda-rhel7-x86_64)Requires: dkms Error: Package: 3:…

嵌入式中详解STM32启动文件

本文对STM32启动文件startup_stm32f10x_hd.s的代码进行讲解,此文件的代码在任何一个STM32F10x工程中都可以找到。 启动文件使用的ARM汇编指令汇总 Stack——栈 Stack_Size EQU 0x00000400 AREA STACK, NOINIT, READWRITE, ALIGN=Stack_Mem SPACE Stack_Size__initial_sp 开辟…

EEG揭秘:视觉线索如何操控我们的运动表现

摘要 在脑电图(EEG)或皮层脑电图(ECoG)实验中&#xff0c;视觉线索常用于时间同步&#xff0c;但可能会无意中诱发神经活动和认知加工&#xff0c;从而使任务解码变得更具挑战性。为了解决这一问题&#xff0c;本研究引入了四种新的视觉线索(淡出(Fade)、旋转(Rotation)、参考…

使用插件i18n实现国际化多语言

1、安装 npm install vue-i18nnext --save 或者 yarn add vue-i18nnext --save 2、配置 新建目录及文件夹 - src - locales - lang - zh.js // 中文&#xff0c; - en.js // 英语&#xff0c; - ar.js // 法语&#xff0c; - jp.js // 日语&#xff0c; - fr…

上万人苦心研究数年的数据,备份怎么做才保险?-Infortrend

业界领先的应用研究机构&#xff0c;拥有上万名员工。需要一套存储设备&#xff0c;能够长期保存大量备份数据。他们从事的研究项目周期&#xff0c;往往持续数月甚至数年&#xff0c;涉及大量的数据收集和分析。为了确保研究的连续性&#xff0c;并且保护关键数据&#xff0c;…

效率提升关键

在当今快节奏的工作环境中&#xff0c;效率软件成为了提升个人和团队生产力的重要工具。这些软件可以帮助人们更好地管理时间、优化工作流程以及增强团队协作。具体分析如下&#xff1a; 1 亿可达 ◦ 简介&#xff1a;亿可达作为一款自动化工具&#xff0c;亿可达被誉为国…