arXiv-2019
文章目录
- 1 Background and Motivation
- 2 Related Work
- 3 Advantages / Contributions
- 4 Method
- 4.1 Oversampling
- 4.2 Augmentation
- 4.3 Copy-Pasting Strategies
- 5 Experiments
- 5.1 Datasets and Metrics
- 5.2 Oversampling
- 5.3 Augmentation
- 5.4 Copy-Pasting strategies
- 5.4 Pasting Algorithms
- 6 Conclusion(own) / Future work
1 Background and Motivation
基于深度学习的目标检测效果在MS COCO数据集上越来越好,但是小目标检出率还是无法媲美中目标或者大目标
原因
- only a few images are containing small objects(含有小目标的图片占比比较小)
- small objects do not appear enough even within each image containing them(每张图片的小目标数量也比较少——lack of diversity in the locations of small objects)
小目标比较少, both across images and across pixels
作者采用 oversampling 和 copy-pasting(not overlap with any existing object)方法来提升 MS COCO 数据集上小目标的检出率
2 Related Work
- Object Detection
- Instance Segmentation
- Small objects
- increasing the input image resolution
- fusing high-resolution features
3 Advantages / Contributions
用 oversampling 和 copy-paste 方法来提升目标检测任务中小目标的检出率
4 Method
Small object detection by Mask R-CNN on MS COCO
统计的还算细致,average matching anchors 比较少,average max IoU 也比较小
large object spanning multiple sliding-window locations often has a high IoU with many anchor boxes
小目标面积比较小,负责预测的 grid anchor 也会少很多(只能说高质量的负样本会变少,因为每个GT只有一个 anchor 负责预测——以前的正负样本匹配策略,小目标比较小,周边 grid 的 anchor 可能覆盖不到目标,同为负样本,但质量应该没有大目标的高)
4.1 Oversampling
over-sample images containing small objects
4.2 Augmentation
(1)copy mask
(2)random transformations——object size ±20% and rotate it ±15°
(3)paste
4.3 Copy-Pasting Strategies
5 Experiments
5.1 Datasets and Metrics
MS COCO 2017
-
118,287 images for training, 5,000 images for validation and 40,670 test images.
-
860,001 and 36,781 objects from 80 categories are annotated with ground-truth bounding boxes and instance masks
5.2 Oversampling
可以看出,小目标提升了,大目标的效果会响应的降低
5.3 Augmentation
aug 应该是 copy-aug-paste 替换了原图
aug + oversample 是 aug 的基础上过采样,应该也不涉及到原图
original + aug 应该是 aug + 原图相当于 2x 小目标图片,训练数据集变多了,对于 baseline 有一点点不公平
同样也可以观察到,小目标提升了,大目标的效果会响应的降低
5.4 Copy-Pasting strategies
(1)Copy-pasting of a single object
单个小目标被 copy-paste 很多次
(2)Copy-pasting of multiple objects
许多小目标,每个小目标仅可能被 copy-paste 一次
choose numerous small objects and copy-paste each of these exactly once in an arbitrary position
(3)Copy-pasting of all small objects
copy-paste all small objects in each image multiple times in random places
感觉和 multi 的区别是 all,效果没有 multi 好
5.4 Pasting Algorithms
paste 的时候,不 overlap,边缘也不做 gaussion blur 效果最好
6 Conclusion(own) / Future work
-
MS COCO 数据集检测和分割的 leaderboard
- https://cocodataset.org/#detection-leaderboard
-
提升点有限,吹的是相对提升很唬人,而且小目标提升后,大目标效果下降比较明显,整体 AP 的提升基本没有
-
方法没有任何创新点,文章描述不够简洁
-
数据集的分析可以参考参考