Spark MLlib 特征工程(下)
前面我们提到,典型的特征工程包含如下几个环节,即预处理、特征选择、归一化、离散化、Embedding 和向量计算,如下图所示。
在上一讲,我们着重讲解了其中的前 3 个环节,也就是预处理、特征选择和归一化,今天这一讲,咱们继续来说说剩下的离散化、Embedding 与向量计算。
特征工程
离散化:Bucketizer
与归一化一样,离散化也是用来处理数值型字段的。离散化可以把原本连续的数值打散,从而降低原始数据的多样性(Cardinality)。举例来说,“BedroomAbvGr”字段的含义是居室数量,在 train.csv 这份数据样本中,“BedroomAbvGr”包含从 1 到 8 的连续整数。
现在,我们根据居室数量,把房屋粗略地划分为小户型、中户型和大户型
不难发现,“BedroomAbvGr”离散化之后,数据多样性由原来的 8 降低为现在的 3。那么问题来了,原始的连续数据好好的,为什么要对它做离散化呢?离散化的动机,主要在于提升特征数据的区分度与内聚性,从而与预测标的产生更强的关联。
就拿“BedroomAbvGr”来说,我们认为一居室和两居室对于房价的影响差别不大,同样,三居室和四居室之间对于房价的影响,也是微乎其微。但是,小户型与中户型之间,以及中户型与大户型之间,房价往往会出现跃迁的现象。换句话说,相比居室数量,户型的差异对于房价的影响更大、区分度更高。因此,把“BedroomAbvGr”做离散化处理,目的在于提升它与预测标的之间的关联性。
那么,在 Spark MLlib 的框架下,离散化具体该怎么做呢?与其他环节一样,Spark MLlib 提供了多个离散化函数,比如 Binarizer、Bucketizer 和 QuantileDiscretizer。我们不妨以 Bucketizer 为代表,结合居室数量“BedroomAbvGr”这个字段,来演示离散化的具体用法。
// 原始字段
val fieldBedroom: String = "BedroomAbvGrInt"
// 包含离散化数据的目标字段
val fieldBedroomDiscrete: String = "BedroomDiscrete"
// 指定离散区间,分别是[负无穷, 2]、[3, 4]和[5, 正无穷]
val splits: Array[Double] = Array(Double.NegativeInfinity, 3, 5, Double.PositiveInfinity)
import org.apache.spark.ml.feature.Bucketizer
// 定义并初始化Bucketizer
val bucketizer = new Bucketizer()
// 指定原始列
.setInputCol(fieldBedroom)
// 指定目标列
.setOutputCol(fieldBedroomDiscrete)
// 指定离散区间
.setSplits(splits)
// 调用transform完成离散化转换
engineeringData = bucketizer.transform(engineeringData)
不难发现,Spark MLlib 提供的特征处理函数,在用法上大同小异。首先,我们创建 Bucketizer 实例,然后将数值型字段 BedroomAbvGrInt 作为参数传入 setInputCol,同时使用 setOutputCol 来指定用于保存离散数据的新字段 BedroomDiscrete。
离散化的过程是把连续值打散为离散值,但具体的离散区间如何划分,还需要我们通过在 setSplits 里指定。离散区间由浮点型数组 splits 提供,从负无穷到正无穷划分出了[负无穷, 2]、[3, 4]和[5, 正无穷]这三个区间。最终,我们调用 Bucketizer 的 transform 函数,对 engineeringData 做离散化。
离散化前后的数据对比,如下图所示。
Embedding
实际上,Embedding 是一个非常大的话题,随着机器学习与人工智能的发展,Embedding 的方法也是日新月异、层出不穷。从最基本的热独编码到 PCA 降维,从 Word2Vec 到 Item2Vec,从矩阵分解到基于深度学习的协同过滤,可谓百花齐放、百家争鸣。更有学者提出:“万物皆可 Embedding”。那么问题来了,什么是 Embedding 呢?
Embedding 是个英文术语,如果非要找一个中文翻译对照的话,我觉得“向量化”(Vectorize)最合适。Embedding 的过程,就是把数据集合映射到向量空间,进而把数据进行向量化的过程。这句话听上去有些玄乎,我换个更好懂的说法,Embedding 的目标,就是找到一组合适的向量,来刻画现有的数据集合。
以 GarageType 字段为例,它有 6 个取值,也就是说我们总共有 6 种车库类型。那么对于这 6 个字符串来说,我们该如何用数字化的方式来表示它们呢?毕竟,模型只能消费数值,不能直接消费字符串。
种方法是采用预处理环节的 StringIndexer,把字符串转换为连续的整数,然后让模型去消费这些整数。在理论上,这么做没有任何问题。但从模型的效果出发,整数的表达方式并不合理。为什么这么说呢?
我们知道,连续整数之间,是存在比较关系的,比如 1 < 3,6 > 5,等等。但是原始的字符串之间,比如,“Attchd”与“Detchd”并不存在大小关系,如果强行用 0 表示“Attchd”、用 1 表示“Detchd”,逻辑上就会出现“Attchd”<“Detchd”的悖论。
因此,预处理环节的 StringIndexer,仅仅是把字符串转换为数字,转换得到的数值是不能直接喂给模型做训练。我们需要把这些数字进一步向量化,才能交给模型去消费。那么问题来了,对于 StringIndexer 输出的数值,我们该怎么对他们进行向量化呢?这就要用到 Embedding 了
咱们不妨从最简单的热独编码(One Hot Encoding)开始,去认识 Embedding 并掌握它的基本用法。我们先来说说,热独编码,是怎么一回事。
首先,通过 StringIndexer,我们把 GarageType 的 6 个取值分别映射为 0 到 5 的六个数值。接下来,使用热独编码,我们把每一个数值都转化为一个向量。向量的维度为 6,与原始字段(GarageType)的多样性(Cardinality)保持一致。换句话说,热独编码的向量维度,就是原始字段的取值个数。
仔细观察上图的六个向量,只有一个维度取值为 1,其他维度全部为 0。取值为 1 的维度与 StringIndexer 输出的索引相一致。举例来说,字符串“Attchd”被 StringIndexer 映射为 0,对应的热独向量是[1, 0, 0, 0, 0, 0]。向量中索引为 0 的维度取值为 1,其他维度全部取 0。不难发现,热独编码是一种简单直接的 Embedding 方法,甚至可以说是“简单粗暴”。不过,在日常的机器学习开发中,“简单粗暴”的热独编码却颇受欢迎。
在预处理环节,我们已经用 StringIndexer 把非数值字段全部转换为索引字段,接下来,我们再用 OneHotEncoder,把索引字段进一步转换为向量字段。
import org.apache.spark.ml.feature.OneHotEncoder
// 非数值字段对应的目标索引字段,也即StringIndexer所需的“输出列”
// val indexFields: Array[String] = categoricalFields.map(_ + "Index").toArray
// 热独编码的目标字段,也即OneHotEncoder所需的“输出列”
val oheFields: Array[String] = categoricalFields.map(_ + "OHE").toArray
// 循环遍历所有索引字段,对其进行热独编码
for ((indexField, oheField) <- indexFields.zip(oheFields)) {
val oheEncoder = new OneHotEncoder()
.setInputCol(indexField)
.setOutputCol(oheField)
engineeringData= oheEncoder.fit(engineeringData).transform(engineeringData)
}
可以看到,我们循环遍历所有非数值特征,依次创建 OneHotEncoder 实例。在实例初始化的过程中,我们把索引字段传入给 setInputCol 函数,把热独编码目标字段传递给 setOutputCol 函数。最终通过调用 OneHotEncoder 的 transform,在 engineeringData 之上完成转换。
其实我们也可以OneHotEncoder输入输出接受数组,也就是说我们可以不用使用循环,看起来代码更简洁
val oheEncoder = new OneHotEncoder()
oheEncoder.setInputCols(indexFields).setOutputCols(oheFields)
engineeringData= oheEncoder.fit(engineeringData).transform(engineeringData)
向量计算
向量计算,作为特征工程的最后一个环节,主要用于构建训练样本中的特征向量(Feature Vectors)。在 Spark MLlib 框架下,训练样本由两部分构成
- 第一部分是预测标的(Label),在“房价预测”的项目中,Label 是房价。
- 第二部分,就是特征向量,在形式上,特征向量可以看作是元素类型为 Double 的数组。
根据前面的特征工程流程图,我们不难发现,特征向量的构成来源多种多样,比如原始的数值字段、归一化或是离散化之后的数值字段、以及向量化之后的特征字段,等等。
Spark MLlib 在向量计算方面提供了丰富的支持,比如前面介绍过的、用于集成特征向量的 VectorAssembler,用于对向量做剪裁的 VectorSlicer,以元素为单位做乘法的 ElementwiseProduct,等等。灵活地运用这些函数,我们可以随意地组装特征向量,从而构建模型所需的训练样本。
在前面的几个环节中(预处理、特征选择、归一化、离散化、Embedding),我们尝试对数值和非数值类型特征做各式各样的转换,目的在于探索可能对预测标的影响更大的潜在因素。
接下来,我们使用 VectorAssembler 将这些潜在因素全部拼接在一起、构建特征向量,从而为后续的模型训练准备好训练样本。
import org.apache.spark.ml.feature.VectorAssembler
/**
入选的数值特征:selectedFeatures
归一化的数值特征:scaledFields
离散化的数值特征:fieldBedroomDiscrete
热独编码的非数值特征:oheFields
*/
val assembler = new VectorAssembler()
.setInputCols(selectedFeatures.toArray ++ scaledFields ++ Array(fieldBedroomDiscrete) ++ oheFields)
.setOutputCol("features")
engineeringData = assembler.transform(engineeringData)
训练模型
转换完成之后,engineeringData 这个 DataFrame 就包含了一列名为“features”的新字段,这个字段的内容,就是每条训练样本的特征向量。接下来,我们就可以像上一讲那样,通过 setFeaturesCol 和 setLabelCol 来指定特征向量与预测标的,定义出线性回归模型。
// 定义线性回归模型
val lr = new LinearRegression()
.setFeaturesCol("features")
.setLabelCol("SalePriceInt")
.setMaxIter(100)
// 训练模型
val lrModel = lr.fit(engineeringData)
// 获取训练状态
val trainingSummary = lrModel.summary
// 获取训练集之上的预测误差
println(s"Root Mean Squared Error (RMSE) on train data: ${trainingSummary.rootMeanSquaredError}")
到此为止,我们打通了特征工程所有关卡
你可能会好奇:“这些不同环节的特征处理,真的会对模型效果有帮助吗?毕竟,折腾了半天,我们还是要看模型效果的”。没错,特征工程的最终目的,是调优模型效果。接下来,通过将不同环节输出的训练样本喂给模型,我们来对比不同特征处理方法对应的模型效果。
总结
可以看到,随着特征工程的推进,模型在训练集上的预测误差越来越小,这说明模型的拟合能力越来越强,而这也就意味着,特征工程确实有助于模型性能的提升。