【linux深入剖析】线程控制 | 多线程

news2025/1/10 16:54:18
🍁你好,我是 RO-BERRY
📗 致力于C、C++、数据结构、TCP/IP、数据库等等一系列知识
🎄感谢你的陪伴与支持 ,故事既有了开头,就要画上一个完美的句号,让我们一起加油

请添加图片描述


目录

  • 1. 创建线程
  • 2. POSIX线程库
  • 3. 线程ID及进程地址空间布局
  • 4. 线程终止
    • 4.1 pthread_exit()
    • 4.2 pthread_cancel()
  • 5.线程等待
  • 6. 分离线程
  • 7. 拓展实验--给线程传入结构体
  • 8. 实现多线程


1. 创建线程

功能:创建一个新的线程

int pthread_create(pthread_t *thread, const pthread_attr_t *attr, void *(*start_routine)(void*), void *arg);

在这里插入图片描述

参数

  • thread:返回线程ID
  • attr:设置线程的属性,attr为NULL表示使用默认属性
  • tart_routine:是个函数地址,线程启动后要执行的函数
  • rg:传给线程启动函数的参数
  • 返回值:成功返回0;失败返回错误码

【错误检查】

  • 传统的一些函数是,成功返回0,失败返回-1,并且对全局变量errno赋值以指示错误。
  • pthreads函数出错时不会设置全局变量errno(而大部分其他POSIX函数会这样做)。而是将错误代码通过返回值返回
  • pthreads同样也提供了线程内的errno变量,以支持其它使用errno的代码。对于pthreads函数的错误,建议通过返回值业判定,因为读取返回值要比读取线程内的errno变量的开销更小

Makefile

testThread:testThread.cc
	g++ -o $@ $^ -lpthread
.PHONY:clean
clean:
	rm -f testThread

testThread.cc

#include <iostream>
#include <unistd.h>
#include <pthread.h>
#include <sys/types.h>
#include <unistd.h>

int gcnt = 100;

// 新线程
void *ThreadRoutine(void *arg)
{
    const char *threadname = (const char *)arg;
    while (true)
    {
        std::cout << "I am a new thread: " << threadname << ", pid: " << getpid()<< std::endl;
        sleep(1);
    }
}

int main()
{
    pthread_t tid;
    pthread_create(&tid, nullptr, ThreadRoutine, (void *)"thread 1");

    while (true)
    {
        std::cout << "I am main thread"<< std::endl;
        sleep(1);
    }
    return 0;
}

运行结果:

在这里插入图片描述
可以看到确实是有了两个线程都在运行,这里的线程就是一个是我们的main主线程,另一个则是我们新创建的线程。

  • 我们可以看到两个线程的PID是一模一样的,那么CPU如何分辨线程呢?
  • CPU划分线程就是用的后面的LWP,PID我们知道,是之前讲过的进程的唯一标识符
  • LWP英文名为 Light Weight Processes,其意思就是轻量化进程,而线程就是轻量化进程,所以这就是线程

上面我们可以注意到我们的makefile文件里面是使用了Pthread库来对我们的代码进行编译的,如果我们不带库就会出现以下报错。其含义就是找不到Pthread函数调用接口

在这里插入图片描述

接下来我们来认识一下POSIX线程库


2. POSIX线程库

  • 与线程有关的函数构成了一个完整的系列,绝大多数函数的名字都是以“pthread_”打头的
  • 要使用这些函数库,要通过引入头文<pthread.h>
  • 链接这些线程函数库时要使用编译器命令的“-lpthread”选项

POSIX线程库,也称为pthread,是一种跨平台的标准API,它为应用程序提供了一套统一的方式来创建和管理线程。

  • 由于Unix-like操作系统(如Linux、macOS)的广泛使用,POSIX标准允许开发者编写一次代码就能在多种平台上运行,避免了为每种操作系统单独编写和维护线程代码的工作量。

  • POSIX线程使得程序可以将并发处理的部分封装成独立的模块,便于模块间的通信和协同工作,提高代码的灵活性和效率。

  • 标准化的线程API保证了不同系统之间的线程行为基本一致,有利于开发者理解和预测其行为,同时也有助于优化线程管理,提升系统的整体性能。

  • POSIX线程库提供了丰富的错误处理机制和同步原语(如互斥锁、条件变量),有助于开发者设计出健壮且安全的多线程应用。

  • 虽然直接操作底层硬件线程可能会更复杂,但是通过POSIX API,开发者能以相对简单的方式实现复杂的并发控制,降低学习曲线。
    在这里插入图片描述

开发者将pthread线程库开发成这样就是为了线程安全并且实现跨平台的性能,让OS能通过线程库提供API给用户才能实现线程的操作

另外需要注意的是,在linux中,如何对这些线程进行管理呢?

其实线程是由线程库来统一进行管理的,在引入线程库的时候,他就会在共享区有一块内存空间,然后我们开辟线程的时候,线程库就会为我们开辟空间来管理线程,线程也是先描述,在组织,其本质上也是一个结构体,有pwd、上下文等属性,线程之间是互相独立的


3. 线程ID及进程地址空间布局

  • pthread_ create函数会产生一个线程ID,存放在第一个参数指向的地址中。该线程ID和前面说的线程ID不是一回事。
  • 前面讲的线程ID属于进程调度的范畴。因为线程是轻量级进程,是操作系统调度器的最小单位,所以需要一个数值来唯一表示该线程。
  • pthread_ create函数第一个参数指向一个虚拟内存单元,该内存单元的地址即为新创建线程的线程ID,
  • 属于NPTL线程库的范畴。线程库的后续操作,就是根据该线程ID来操作线程的。
  • 线程库NPTL提供了pthread_ self函数,可以获得线程自身的ID

pthread_t pthread_self(void);

在这里插入图片描述

#include <iostream>
#include <unistd.h>
#include <pthread.h>
#include <sys/types.h>
#include <unistd.h>

// 新线程
void *ThreadRoutine(void *arg)
{
    const char *threadname = (const char *)arg;
    while (true)
    {
        std::cout << "I am a new thread: " << threadname << "thread id: " << pthread_self() << std::endl;
        sleep(1);
    }
}

int main()
{
    pthread_t tid;
    pthread_create(&tid, nullptr, ThreadRoutine, (void *)"thread 1");

    while (true)
    {
        std::cout << "I am main thread" << "thread id: " << pthread_self()<< std::endl;
        sleep(1);
    }
    return 0;
}

在这里插入图片描述
可以看到main线程id和新线程id是不一样的

pthread_t类型的线程ID,本质就是一个进程地址空间上的一个地址
在这里插入图片描述

上图左边是进程创建的地址空间,中间的mmap区域就是我们的共享区,里面便是Pthread库,右边就是Pthread库里有两个线程结构体图

4. 线程终止

如果需要只终止某个线程而不终止整个进程,可以有三种方法:

  1. 从线程函数return。这种方法对主线程不适用,从main函数return相当于调用exit。
  2. 线程可以调用pthread_ exit终止自己。
  3. 一个线程可以调用pthread_ cancel终止同一进程中的另一个线程。

4.1 pthread_exit()

线程终止函数接口

void pthread_exit(void *value_ptr);

参数

  • value_ptr : value_ptr不要指向一个局部变量。
  • 返回值:无返回值,跟进程一样,线程结束的时候无法返回到它的调用者(自身)

需要注意,pthread_exit或者return返回的指针所指向的内存单元必须是全局的或者是用malloc分配的,不能在线程函数的栈上分配,因为当其它线程得到这个返回指针时线程函数已经退出了。

测试代码

#include <iostream>
#include <unistd.h>
#include <pthread.h>
#include <sys/types.h>
#include <unistd.h>

// 新线程
void *ThreadRoutine(void *arg)
{
    const char *threadname = (const char *)arg;
    int cnt = 5;
    while (cnt--)
    {
        std::cout << "I am a new thread: " << threadname << std::endl;
        sleep(1);
    }
    pthread_exit(nullptr);
}

int main()
{
    pthread_t tid;
    pthread_create(&tid, nullptr, ThreadRoutine, (void *)"thread 1");

    while (true)
    {
        std::cout << "I am main thread" << std::endl;
        sleep(1);
    }
    return 0;
}

在这里插入图片描述
可以看到我们的主线程还在执行输出语句,新线程已经结束生命周期了

4.2 pthread_cancel()

功能:取消一个执行中的线程
原型
int pthread_cancel(pthread_t thread);
参数
thread:线程ID
返回值:成功返回0;失败返回错误码

#include <iostream>
#include <unistd.h>
#include <pthread.h>
#include <sys/types.h>
#include <unistd.h>

// 新线程
void *ThreadRoutine(void *arg)
{
    const char *threadname = (const char *)arg;
    while (1)
    {
        std::cout << "I am a new thread: " << threadname << std::endl;
        sleep(1);
    }
}

int main()
{
    pthread_t tid;
    pthread_create(&tid, nullptr, ThreadRoutine, (void *)"thread 1");
    sleep(5);
    while (true)
    {
        std::cout << "I am main thread" << std::endl;
        sleep(1);
        pthread_cancel(tid);
    }
    return 0;
}

我们让主线程沉睡了5秒,5秒后新线程成功关闭
在这里插入图片描述


5.线程等待

  • 已经退出的线程,其空间没有被释放,仍然在进程的地址空间内。
  • 创建新的线程不会复用刚才退出线程的地址空间。

线程等待没有之前的僵尸进程明显,但是每个线程创建后是需要我们对其进行回收的

功能:等待线程结束
原型
int pthread_join(pthread_t thread, void **value_ptr);
参数
thread:线程ID
value_ptr:它指向一个指针,后者指向线程的返回值
返回值:成功返回0;失败返回错误码

调用该函数的线程将挂起等待,直到id为thread的线程终止。thread线程以不同的方法终止,通过pthread_join得到的终止状态是不同的,总结如下:

  1. 如果thread线程通过return返回,value_ ptr所指向的单元里存放的是thread线程函数的返回值。
  2. 如果thread线程被别的线程调用pthread_ cancel异常终掉,value_ ptr所指向的单元里存放的是常数PTHREAD_ CANCELED。
  3. 如果thread线程是自己调用pthread_exit终止的,value_ptr所指向的单元存放的是传给pthread_exit的参数。
  4. 如果对thread线程的终止状态不感兴趣,可以传NULL给value_ ptr参数。

在这里插入图片描述

测试代码

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <pthread.h>

void *thread1(void *arg)
{
    printf("thread 1 returning ... \n");
    int *p = (int *)malloc(sizeof(int));
    *p = 1;
    return (void *)p;
}

void *thread2(void *arg)
{
    printf("thread 2 exiting ...\n");
    int *p = (int *)malloc(sizeof(int));
    *p = 2;
    pthread_exit((void *)p);
}

void *thread3(void *arg)
{
    while (1)
    { //
        printf("thread 3 is running ...\n");
        sleep(1);
    }
    return NULL;
}
int main(void)
{
    pthread_t tid;
    void *ret;

    // thread 1 return
    pthread_create(&tid, NULL, thread1, NULL);
    pthread_join(tid, &ret);
    printf("thread return, thread id %d, return code:%d\n",(int16_t)tid, *(int *)ret);
    free(ret);

    // thread 2 exit
    pthread_create(&tid, NULL, thread2, NULL);
    pthread_join(tid, &ret);
    printf("thread return, thread id %d, return code:%d\n", (int16_t)tid, *(int *)ret);
    free(ret);

    // thread 3 cancel by other
    pthread_create(&tid, NULL, thread3, NULL);
    sleep(3);
    pthread_cancel(tid);
    pthread_join(tid, &ret);
    if (ret == PTHREAD_CANCELED)
        printf("thread return, thread id %d, return code:PTHREAD_CANCELED\n", (int16_t)tid);
    else
        printf("thread return, thread id %d, return code:NULL\n", (int16_t)tid);

    return 0;
}

在这里插入图片描述


6. 分离线程

默认情况下,新创建的线程是joinable的,线程退出后,需要对其进行pthread_join操作,否则无法释放资源,从而造成系统泄漏。
如果不关心线程的返回值,join是一种负担,这个时候,我们可以告诉系统,当线程退出时,自动释放线程资源。

int pthread_detach(pthread_t thread);

可以是线程组内其他线程对目标线程进行分离,也可以是线程自己分离:

pthread_detach(pthread_self());

joinable和分离是冲突的,一个线程不能既是joinable又是分离的。

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <pthread.h>

void *thread_run(void *arg)
{
    pthread_detach(pthread_self());
    printf("%s\n", (char *)arg);
    return NULL;
}

int main(void)
{
    pthread_t tid;
    if (pthread_create(&tid, NULL, thread_run,(void *)"thread1 run...") != 0)
    {
        printf("create thread error\n");
        return 1;
    }
    
    int ret = 0;
    sleep(1); // 很重要,要让线程先分离,再等待
    if (pthread_join(tid, NULL) == 0)
    {
        printf("pthread wait success\n");
        ret = 0;
    }
    else
    {
        printf("pthread wait failed\n");
        ret = 1;
    }
    return ret;
}

在这里插入图片描述


7. 拓展实验–给线程传入结构体

int pthread_create(pthread_t *thread, const pthread_attr_t *attr, void *(*start_routine)(void*), void *arg);

线程的第一个参数是他的线程ID,第二个是它的属性一般设置为nullptr,第三个为执行的函数,第四个参数则是可以传入线程的参数,其类型是void*的类型,所以我们可以尝试传入任意类型

#include <iostream>
#include <string.h>
#include <unistd.h>
#include <pthread.h>
#include <functional>
#include <string>
#include <ctime>
// typedef std::function<void()> func_t;
using func_t = std::function<void()>;

class ThreadData
{
public:
    ThreadData(const std::string &name, const uint64_t &ctime, func_t f)
        : threadname(name), createtime(ctime), func(f)
    {
    }

public:
    std::string threadname;
    uint64_t createtime;
    func_t func;
};

void Print()
{
    std::cout << "我是线程执行的大任务的一部分" << std::endl;
}

// 新线程
void *ThreadRountine(void *args)
{
    ThreadData *td = static_cast<ThreadData *>(args);
    while (true)
    {
        std::cout << "new thread"
                  << " thread name: " << td->threadname << " create time: " << td->createtime << std::endl;
        td->func();
        sleep(1);
    }
}
// 获取返回值
// 主线程
int main()
{

    pthread_t tid;
    ThreadData *td = new ThreadData("new thread", (uint64_t)time(nullptr), Print);
    pthread_create(&tid, nullptr, ThreadRountine, td);

    while (true)
    {
        std::cout << "main thread" << std::endl;
        sleep(3);
    }
}

在这里插入图片描述


8. 实现多线程

#include <iostream>
#include <string.h>
#include <unistd.h>
#include <pthread.h>
#include <functional>
#include <string>
#include <ctime>
// typedef std::function<void()> func_t;
using func_t = std::function<void()>;

const int threadnum = 5;

//给线程传入的结构体
class ThreadData
{
public:
    ThreadData(const std::string &name, const uint64_t &ctime, func_t f)
        : threadname(name), createtime(ctime), func(f)
    {
    }

public:
    std::string threadname;
    uint64_t createtime;
    func_t func;
};


void Print()
{
    std::cout << "我是线程执行的大任务的一部分" << std::endl;
}

// 新线程
void *ThreadRountine(void *args)
{
    int a = 10;
    ThreadData *td = static_cast<ThreadData *>(args); //类型转换为结构体指针
    while (true)
    {
        std::cout << "new thread"
                  << " thread name: " << td->threadname << " create time: " << td->createtime << std::endl;
        td->func();
        sleep(1);
    }
}

int main()
{
    std::vector<pthread_t> pthreads;
    for (size_t i = 0; i < threadnum; i++)
    {
    	//snprintf函数实现输入线程名称
        char threadname[64];
        snprintf(threadname, sizeof(threadname), "%s-%lu", "thread", i); 

        pthread_t tid;
        //time时间戳函数
        ThreadData *td = new ThreadData(threadname, (uint64_t)time(nullptr), Print);
        pthread_create(&tid, nullptr, ThreadRountine, td);
        pthreads.push_back(tid);
        sleep(1);
    }



    while (true)
    {
        std::cout << "main thread" << std::endl;
        sleep(3);
    }
}

在这里插入图片描述
可以看到这里右边有了六个线程,一个是我们的主线程。另外五个则是新创建的线程

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1984143.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基于Kubernetes v1.25.0和Docker部署高可用集群(说明篇)

目录描述 Kubernetes组件说明 特定接口CRI、CNI、CSI Kubernetes v1.25集群创建方案选择 一、Kubernetes组件说明 Docker 的运行机制 运行机制详解&#xff1a; docker client&#xff1a;命令行输入的docker命令就是一个docker客户端 docker Engine&#xff1a;Engine也…

Java: 死锁问题详解(5000字)

文章目录 死锁的出现场景1. 一个线程一把锁,这个线程针对这把锁,连续加锁了两次2. 两个线程,两把锁3. N个线程 , M个锁4. 内存可见性为什么会出现内存可见性问题呢?解决方法 volatile关键字 总结synchronized:死锁的四个必要条件(缺一不可)[重点]:内存可见性问题: 死锁的出现场…

PCL安装与配置(PCL1.9.1+MSVC2017)

为了和我的VS的版本VS 2017对应&#xff0c;PCL下载的也是msvc_2017,PCL msvc2017最新的则是1.901版本&#xff0c;我们就以PCL 1.9.1为例了。&#xff08;如果你的vs是2019和2022&#xff0c;一定要注意PCL的版本&#xff09;。 一、下载PCL 我们打开PCL的github下载地址&am…

GDB调试器

GDB调试器 GDB的主要功能 常见命令 3、实战 1、生成能调试的执行文件&#xff08;一定要加-g&#xff09; 第一个是不能调试的 第二个这样加了-g才能进行调试 如果没加-g 执行gdb 执行文件&#xff08;会报下面这个 &#xff09; 像这样才是正常的 执行 gdb a_yes_g 这…

SSM计算机组成原理课程平台-计算机毕设定制-附项目源码(可白嫖)50168

摘 要 21世纪的今天&#xff0c;随着社会的不断发展与进步&#xff0c;人们对于信息科学化的认识&#xff0c;已由低层次向高层次发展&#xff0c;由原来的感性认识向理性认识提高&#xff0c;管理工作的重要性已逐渐被人们所认识&#xff0c;科学化的管理&#xff0c;使信息存…

金融行业到底该选择什么样的FTP替代方案?

2018年以来&#xff0c;受“华为、中兴事件”影响&#xff0c;我国科技尤其是上游核心技术受制于人的现状对我 国经济发展提出了严峻考验。在全球产业从工业经济向数字经济升级的关键时期&#xff0c;中国明确 “数字中国”建设战略&#xff0c; 抢占数字经济产业链制高点。 在…

Python开发工具PyCharm入门指南 - 用户界面主题更改

JetBrains PyCharm是一种Python IDE&#xff0c;其带有一整套可以帮助用户在使用Python语言开发时提高其效率的工具。此外&#xff0c;该IDE提供了一些高级功能&#xff0c;以用于Django框架下的专业Web开发。 界面主题定义了窗口、对话框、按钮和用户界面的所有可视元素的外观…

vscode开发avalonia

安装 安装.net 8 安装avalonia模板 dotnet new install Avalonia.Templates创建项目 dotnet new avalonia.app -o GetStartedApp安装c# dev kit插件和Avalonia for VSCode Community dotnet run运行 修改代码 MainWindow.axaml <Window xmlns"https://githu…

企业层面经济政策不确定性感知数据(2001-2023年)

1.指标介绍 企业经济政策不确定性感知指的是企业在面对政府经济政策变动时所感受到的风险和不确定性程度&#xff0c;这种感知会影响企业的投资决策、生产计划和市场策略 文章根据上市公司披露的MD&A文本&#xff0c;提取指标衡量企业个体面临的经济政策不确定性。 2.参…

了解线性回归、岭回归和套索回归

逐步对 Linear、Ridge 和 Lasso 回归进行数学理解。 ​ LASSO&#xff08;左&#xff09;和岭回归&#xff08;右&#xff09;的约束区域 一、说明 在本文中&#xff0c;我们将深入探讨机器学习中两种基本正则化技术的基础和应用&#xff1a;Ridge 回归和 Lasso 回归。这些方…

脊髓损伤小伙伴的活力重启秘籍! 让我们一起动起来,拥抱不一样的精彩生活✨

Hey小伙伴们~&#x1f44b; 今天咱们来聊聊一个超级重要又温暖的话题——脊髓损伤后的锻炼大法来啦&#xff01;&#x1f389; 记住&#xff0c;无论遇到什么挑战&#xff0c;我们都要像打不死的小强一样&#xff0c;活力满满地面对每一天&#xff01;&#x1f4aa; 首先&#…

基础进阶-搭建pxe网络安装环境实现服务器自动部署

目录 原理解释 ​编辑 开机界面解释 搭建步骤 下载环境需要用到的基本程序 查看帮助 帮助内容解释 环境搭建 修改 DHCP 修改 default 文件 测试 原理解释 开机界面解释 在开机界面中&#xff0c;圈起来的部分显示的就是光盘&#xff0c;我们需要将光盘转换成网络的 在…

.NET内网实战:模拟Installer关闭Defender

01基本介绍 02编码实现 原理上通过Windows API函数将当前进程的权限提升至TrustedInstaller&#xff0c;从而实现了对Windows Defender服务的控制。通常可以利用Windows API中的OpenSCManager、OpenProcessToken、ImpersonateLoggedOnUser以及ControlService等函数协同工作&am…

Modbus-Ascii详解

目录 Modbus-Ascii详解 Modbus-Ascii帧结构 LRC效验 将数据字节转成ASCII 将返回帧转为数据字节 Modbus-Ascii的实现 使用NModbus4实现Modbus-Ascii 实例 Modbus-Ascii详解 Modbus ASCII是一种将二进制数据转换为可打印的ASCII字符的通信协议&#xff0c;‌每个8位数据需要两…

WPF学习(4)- VirtualizingStackPanel (虚拟化元素)+Canvas控件(绝对布局)

VirtualizingStackPanel虚拟化元素 VirtualizingStackPanel 类&#xff08;虚拟化元素&#xff09;和StackPanel 类在用法上几乎差不多。其作用是在水平或垂直的一行中排列并显示内容。它继承于一个叫VirtualizingPanel的抽象类&#xff0c;而这个VirtualizingPanel抽象类继承…

AI基础架构-NVLink 技术详解

AI Infra 基础知识 - NVLink 入门 NVLink&#xff0c;一种专有互连硬件&#xff0c;实现Nvidia GPU与CPU之间的高效、一致数据和控制传输&#xff0c;提升多GPU系统性能。 概述 NVLink 于 2014 年初发布&#xff0c;旨在作为 PCI Express 的替代解决方案&#xff0c;具有更…

Java零基础之多线程篇:线程同步

哈喽&#xff0c;各位小伙伴们&#xff0c;你们好呀&#xff0c;我是喵手。运营社区&#xff1a;C站/掘金/腾讯云&#xff1b;欢迎大家常来逛逛 今天我要给大家分享一些自己日常学习到的一些知识点&#xff0c;并以文字的形式跟大家一起交流&#xff0c;互相学习&#xff0c;一…

Java13.0标准之重要特性及用法实例(二十三)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 新书发布&#xff1a;《Android系统多媒体进阶实战》&#x1f680; 优质专栏&#xff1a; Audio工程师进阶系列…

【第三版 系统集成项目管理工程师】第9章 项目管理概论

持续更新。。。。。。。。。。。。。。。 【第三版】第九章 项目管理概论 9.1 PMBOK的发展9.2 项目基本要素9.2.1项目基础 P3041.独特的产品、服务或成果-P3042.临时性工作-P3043.项目驱动变更-P3054.项目创造业务价值-P3055.项目启动背景-P306 9.2.2项目管理 P3069.2.2 项目管…

AQS的ReentrantLock源码

什么是AQS&#xff08;全称AbstractQueuedSynchronizer&#xff09; 代表&#xff1a;重入锁、独占锁/共享锁、公平锁/非公平锁 是JUC包中线程阻塞、阻塞队列、唤醒、尝试获取锁的一个框架 AbstractQueuedSynchronizer是全称&#xff0c;是一个模板模式&#xff0c;一些线程…