Java里面为什么搞了双重检查锁,写完这篇文章终于真相大白了

news2024/12/23 14:05:39

img

双重检查锁定与延迟初始化

在 java 程序中,有时候可能需要推迟一些高开销的对象初始化操作,并且只有在使用这些对象时才进行初始化。此时程序员可能会采用延迟初始化。但要正确实现线程安全的延迟初始化需要一些技巧,否则很容易出现问题。比如,下面是非线程安全的延迟初始化对象的示例代码:

COPYpublic class UnsafeLazyInitialization {
    private static Instance instance;

    public static Instance getInstance() {
        if (instance == null) //1:A 线程执行 
            instance = new Instance(); //2:B 线程执行 
        return instance;
    }
}

在 UnsafeLazyInitialization 中,假设 A 线程执行代码 1 的同时,B 线程执行代码 2。此时,线程 A 可能会看到 instance 引用的对象还没有完成初始化(出现这种情况的原因见后文的“问题的根源”)。

对于 UnsafeLazyInitialization,我们可以对 getInstance() 做同步处理来实现线程安全的延迟初始化。示例代码如下:

COPYpublic class SafeLazyInitialization {
    private static Instance instance;

    public synchronized static Instance getInstance() {
        if (instance == null)
            instance = new Instance();
        return instance;
    }
}

由于对 getInstance() 做了同步处理,synchronized 将导致性能开销。如果 getInstance() 被多个线程频繁的调用,将会导致程序执行性能的下降。反之,如果 getInstance() 不会被多个线程频繁的调用,那么这个延迟初始化方案将能提供令人满意的性能。

在早期的 JVM 中,synchronized(甚至是无竞争的 synchronized)存在这巨大的性能开销。因此,人们想出了一个“聪明”的技巧:双重检查锁定(double-checked locking)。人们想通过双重检查锁定来降低同步的开销。下面是使用双重检查锁定来实现延迟初始化的示例代码:

COPYpublic class DoubleCheckedLocking {                 //1
    private static Instance instance;                    //2

    public static Instance getInstance() {               //3
        if (instance == null) {                          //4: 第一次检查 
            synchronized (DoubleCheckedLocking.class) {  //5: 加锁 
                if (instance == null)                    //6: 第二次检查 
                    instance = new Instance();           //7: 问题的根源出在这里 
            }                                            //8
        }                                                //9
        return instance;                                 //10
    }                                                    //11
}                                                        //12

如上面代码所示,如果第一次检查 instance 不为 null,那么就不需要执行下面的加锁和初始化操作。因此可以大幅降低 synchronized 带来的性能开销。上面代码表面上看起来,似乎两全其美:

  • 在多个线程试图在同一时间创建对象时,会通过加锁来保证只有一个线程能创建对象。

  • 在对象创建好之后,执行 getInstance() 将不需要获取锁,直接返回已创建好的对象。

    双重检查锁定看起来似乎很完美,但这是一个错误的优化!在线程执行到第 4 行代码读取到 instance 不为 null 时,instance 引用的对象有可能还没有完成初始化。

问题的根源

前面的双重检查锁定示例代码的第 7 行(instance = new Singleton();)创建一个对象。这一行代码可以分解为如下的三行伪代码:

COPYmemory = allocate();   //1:分配对象的内存空间 
ctorInstance(memory);  //2:初始化对象 
instance = memory;     //3:设置 instance 指向刚分配的内存地址

上面三行伪代码中的 2 和 3 之间,可能会被重排序(在一些 JIT 编译器上,这种重排序是真实发生的,详情见参考文献 1 的“Out-of-order writes”部分)。2 和 3 之间重排序之后的执行时序如下:

COPYmemory = allocate();   //1:分配对象的内存空间 
instance = memory;     //3:设置 instance 指向刚分配的内存地址 
                       // 注意,此时对象还没有被初始化!
ctorInstance(memory);  //2:初始化对象

根据《The Java Language Specification, Java SE 7 Edition》(后文简称为 java 语言规范),所有线程在执行 java 程序时必须要遵守 intra-thread semantics。intra-thread semantics 保证重排序不会改变单线程内的程序执行结果。换句话来说,intra-thread semantics 允许那些在单线程内,不会改变单线程程序执行结果的重排序。上面三行伪代码的 2 和 3 之间虽然被重排序了,但这个重排序并不会违反 intra-thread semantics。这个重排序在没有改变单线程程序的执行结果的前提下,可以提高程序的执行性能。

为了更好的理解 intra-thread semantics,请看下面的示意图(假设一个线程 A 在构造对象后,立即访问这个对象):

img

如上图所示,只要保证 2 排在 4 的前面,即使 2 和 3 之间重排序了,也不会违反 intra-thread semantics。

下面,再让我们看看多线程并发执行的时候的情况。请看下面的示意图:

img

由于单线程内要遵守 intra-thread semantics,从而能保证 A 线程的程序执行结果不会被改变。但是当线程 A 和 B 按上图的时序执行时,B 线程将看到一个还没有被初始化的对象。

注:本文统一用红色的虚箭线标识错误的读操作,用绿色的虚箭线标识正确的读操作。

回到本文的主题,DoubleCheckedLocking 示例代码的第 7 行(instance = new Singleton();)如果发生重排序,另一个并发执行的线程 B 就有可能在第 4 行判断 instance 不为 null。线程 B 接下来将访问 instance 所引用的对象,但此时这个对象可能还没有被 A 线程初始化!下面是这个场景的具体执行时序:

时间线程 A线程 B
t1A1:分配对象的内存空间
t2A3:设置 instance 指向内存空间
t3B1:判断 instance 是否为空
t4B2:由于 instance 不为 null,线程 B 将访问 instance 引用的对象
t5A2:初始化对象
t6A4:访问 instance 引用的对象

这里 A2 和 A3 虽然重排序了,但 java 内存模型的 intra-thread semantics 将确保 A2 一定会排在 A4 前面执行。因此线程 A 的 intra-thread semantics 没有改变。但 A2 和 A3 的重排序,将导致线程 B 在 B1 处判断出 instance 不为空,线程 B 接下来将访问 instance 引用的对象。此时,线程 B 将会访问到一个还未初始化的对象。

在知晓了问题发生的根源之后,我们可以想出两个办法来实现线程安全的延迟初始化:

  1. 不允许 2 和 3 重排序;
  2. 允许 2 和 3 重排序,但不允许其他线程“看到”这个重排序。

volatile解决方案

对于前面的基于双重检查锁定来实现延迟初始化的方案(指 DoubleCheckedLocking 示例代码),我们只需要做一点小的修改(把 instance 声明为 volatile 型),就可以实现线程安全的延迟初始化。请看下面的示例代码:

COPYpublic class SafeDoubleCheckedLocking {
    private volatile static Instance instance;

    public static Instance getInstance() {
        if (instance == null) {
            synchronized (SafeDoubleCheckedLocking.class) {
                if (instance == null)
                    instance = new Instance();//instance 为 volatile,现在没问题了 
            }
        }
        return instance;
    }
}

注意,这个解决方案需要 JDK5 或更高版本(因为从 JDK5 开始使用新的 JSR-133 内存模型规范,这个规范增强了 volatile 的语义)。

当声明对象的引用为 volatile 后,“问题的根源”的三行伪代码中的 2 和 3 之间的重排序,在多线程环境中将会被禁止。上面示例代码将按如下的时序执行:

img

这个方案本质上是通过禁止上图中的 2 和 3 之间的重排序,来保证线程安全的延迟初始化。

基于类初始化的解决方案

JVM 在类的初始化阶段(即在 Class 被加载后,且被线程使用之前),会执行类的初始化。在执行类的初始化期间,JVM 会去获取一个锁。这个锁可以同步多个线程对同一个类的初始化。

基于这个特性,可以实现另一种线程安全的延迟初始化方案(这个方案被称之为 Initialization On Demand Holder idiom):

COPYpublic class InstanceFactory {
    private static class InstanceHolder {
        public static Instance instance = new Instance();
    }

    public static Instance getInstance() {
        return InstanceHolder.instance ;  // 这里将导致 InstanceHolder 类被初始化 
    }
}

假设两个线程并发执行 getInstance(),下面是执行的示意图:

img

这个方案的实质是:允许“问题的根源”的三行伪代码中的 2 和 3 重排序,但不允许非构造线程(这里指线程 B)“看到”这个重排序。

初始化一个类,包括执行这个类的静态初始化和初始化在这个类中声明的静态字段。根据 java 语言规范,在首次发生下列任意一种情况时,一个类或接口类型 T 将被立即初始化:

  • T 是一个类,而且一个 T 类型的实例被创建;

  • T 是一个类,且 T 中声明的一个静态方法被调用;

  • T 中声明的一个静态字段被赋值;

  • T 中声明的一个静态字段被使用,而且这个字段不是一个常量字段;

  • T 是一个顶级类(top level class,见 java 语言规范的§7.6),而且一个断言语句嵌套在 T 内部被执行。

    在 InstanceFactory 示例代码中,首次执行 getInstance() 的线程将导致 InstanceHolder 类被初始化(符合情况 4)。

    由于 java 语言是多线程的,多个线程可能在同一时间尝试去初始化同一个类或接口(比如这里多个线程可能在同一时刻调用 getInstance() 来初始化 InstanceHolder 类)。因此在 java 中初始化一个类或者接口时,需要做细致的同步处理。

    Java 语言规范规定,对于每一个类或接口 C,都有一个唯一的初始化锁 LC 与之对应。从 C 到 LC 的映射,由 JVM 的具体实现去自由实现。JVM 在类初始化期间会获取这个初始化锁,并且每个线程至少获取一次锁来确保这个类已经被初始化过了(事实上,java 语言规范允许 JVM 的具体实现在这里做一些优化,见后文的说明)。

流程分析

对于类或接口的初始化,java 语言规范制定了精巧而复杂的类初始化处理过程。java 初始化一个类或接口的处理过程如下(这里对类初始化处理过程的说明,省略了与本文无关的部分;同时为了更好的说明类初始化过程中的同步处理机制,笔者人为的把类初始化的处理过程分为了五个阶段):

第一阶段

第一阶段:通过在 Class 对象上同步(即获取 Class 对象的初始化锁),来控制类或接口的初始化。这个获取锁的线程会一直等待,直到当前线程能够获取到这个初始化锁。

假设 Class 对象当前还没有被初始化(初始化状态 state 此时被标记为 state = noInitialization),且有两个线程 A 和 B 试图同时初始化这个 Class 对象。下面是对应的示意图:

img

下面是这个示意图的说明:

时间线程 A线程 B
t1A1: 尝试获取 Class 对象的初始化锁。这里假设线程 A 获取到了初始化锁B1: 尝试获取 Class 对象的初始化锁,由于线程 A 获取到了锁,线程 B 将一直等待获取初始化锁
t2A2:线程 A 看到线程还未被初始化(因为读取到 state == noInitialization),线程设置 state = initializing
t3A3:线程 A 释放初始化锁
第二阶段

第二阶段:线程 A 执行类的初始化,同时线程 B 在初始化锁对应的 condition 上等待:

img

下面是这个示意图的说明:

时间线程 A线程 B
t1A1: 执行类的静态初始化和初始化类中声明的静态字段B1:获取到初始化锁
t2B2:读取到 state == initializing
t3B3:释放初始化锁
t4B4:在初始化锁的 condition 中等待
第三阶段

第三阶段:线程 A 设置 state = initialized,然后唤醒在 condition 中等待的所有线程:

img

下面是这个示意图的说明:

时间线程 A
t1A1:获取初始化锁
t2A2:设置 state = initialized
t3A3:唤醒在 condition 中等待的所有线程
t4A4:释放初始化锁
t5A5:线程 A 的初始化处理过程完成
第四阶段

第四阶段:线程 B 结束类的初始化处理:

img

下面是这个示意图的说明:

时间线程 B
t1B1:获取初始化锁
t2B2:读取到 state == initialized
t3B3:释放初始化锁
t4B4:线程 B 的类初始化处理过程完成

线程 A 在第二阶段的 A1 执行类的初始化,并在第三阶段的 A4 释放初始化锁;线程 B 在第四阶段的 B1 获取同一个初始化锁,并在第四阶段的 B4 之后才开始访问这个类。根据 java 内存模型规范的锁规则,这里将存在如下的 happens-before 关系:

img

这个 happens-before 关系将保证:线程 A 执行类的初始化时的写入操作(执行类的静态初始化和初始化类中声明的静态字段),线程 B 一定能看到。

第五阶段

第五阶段:线程 C 执行类的初始化的处理:

img

下面是这个示意图的说明:

时间线程 B
t1C1:获取初始化锁
t2C2:读取到 state == initialized
t3C3:释放初始化锁
t4C4:线程 C 的类初始化处理过程完成

在第三阶段之后,类已经完成了初始化。因此线程 C 在第五阶段的类初始化处理过程相对简单一些(前面的线程 A 和 B 的类初始化处理过程都经历了两次锁获取 - 锁释放,而线程 C 的类初始化处理只需要经历一次锁获取 - 锁释放)。

线程 A 在第二阶段的 A1 执行类的初始化,并在第三阶段的 A4 释放锁;线程 C 在第五阶段的 C1 获取同一个锁,并在在第五阶段的 C4 之后才开始访问这个类。根据 java 内存模型规范的锁规则,这里将存在如下的 happens-before 关系:

这个 happens-before 关系将保证:线程 A 执行类的初始化时的写入操作,线程 C 一定能看到。

注 1:这里的 condition 和 state 标记是本文虚构出来的。Java 语言规范并没有硬性规定一定要使用 condition 和 state 标记。JVM 的具体实现只要实现类似功能即可。

注 2:Java 语言规范允许 Java 的具体实现,优化类的初始化处理过程(对这里的第五阶段做优化),具体细节参见 java 语言规范的 12.4.2 章。

通过对比基于 volatile 的双重检查锁定的方案和基于类初始化的方案,我们会发现基于类初始化的方案的实现代码更简洁。但基于 volatile 的双重检查锁定的方案有一个额外的优势:除了可以对静态字段实现延迟初始化外,还可以对实例字段实现延迟初始化。

总结

延迟初始化降低了初始化类或创建实例的开销,但增加了访问被延迟初始化的字段的开销。在大多数时候,正常的初始化要优于延迟初始化。如果确实需要对实例字段使用线程安全的延迟初始化,请使用上面介绍的基于 volatile 的延迟初始化的方案;如果确实需要对静态字段使用线程安全的延迟初始化,请使用上面介绍的基于类初始化的方案。

本文由传智教育博学谷教研团队发布。

如果本文对您有帮助,欢迎关注点赞;如果您有任何建议也可留言评论私信,您的支持是我坚持创作的动力。

转载请注明出处!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/193155.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

城市POI数据爬取-百度地图版

1 API说明 目前百度地图的最新版为地图检索V2.0服务。详细介绍可以通过开发文档-web服务Api-地点检索V2.0获取。 在使用API前需要提前注册账号获取ak。对于免费账号:目前的每日访问次数是100次,最多可以获取2000条数据。 如不需讲解仅需要下载代码&am…

阿里软件架构师手写JDK源码,看完真的膜拜

最近有不少小伙伴在后台留言,说 Java 的面试越来越难了,尤其是技术面,考察得越来越细,越来越底层。 通过和大厂的面试官聊了一下发现,现在大厂特别爱考底层的一些原理,因为一些底层是不涉及到语言的&#x…

【Linux】进程状态的理解

🤣 爆笑教程 👉 《看表情包学Linux》👈 猛戳订阅 🔥 💭 写在前面:本章我们专门讲解进程的状态。我们先学习具体的 Linux 系统状态,再去介绍 OS 学科面对的概念如何理解 —— 运行态、终止态、阻…

二叉树的基础应用

二叉树 树概念及结构 1.1树的概念 树是一种非线性的数据结构,它是由n(n>0)个有限结点组成一个具有层次关系的集合。把它叫做树是因 为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。 有一个特殊的结点…

Seata分布式事务落地解决方案

引言上一篇文章介绍了分布式事务理论和相关解决方案的具体思路,我们下面快速复习一下相关知识点:1.分布式事务问题1.1.本地事务本地事务,也就是传统的单机事务。在传统数据库事务中,必须要满足四个原则:1.2.分布式事务分布式事务&…

Houdini_grass_sim (关于植物结算)

2023-2-2 开年第一篇 (记录下关于植物结算的笔记) 这是我们要算的植物(草) 思路 这个草分2部分 主干和叶子(这里我没考虑取解决穿插) 1.主干提取中心线 —— 2.用线结算器(主干)—…

MongoDB的安装(window系统)

最近因为用到mongodb,所以研究了一下,遇到一些问题,和大家分析一下。介绍:MongoDB 是一个基于分布式文件存储的数据库。由 C 语言编写。旨在为 WEB 应用提供可扩展的高性能数据存储解决方案。MongoDB 是一个介于关系数据库和非关系…

AcWing 320. 能量项链(环形区间DP)

AcWing 320. 能量项链(环形区间DP)一、 问题:二、分析:三、代码一、 问题: 二、分析: 在讲解这道题之前,大家需要对线性区间DP和环形区间DP有一定的了解,因此如果不会这两个知识点的…

SpringSecurity 安全框架详解

SpringSecurity 安全框架详解 1.简介 先赘述一下身份认证和用户授权: 用户认证(Authentication):系统通过校验用户提供的用户名和密码来验证该用户是否为系统中的合法主体,即是否可以访问该系统;用户授权…

【JavaEE】文件操作IO之File 、InputStream、OutputStream 用法详解

目录 一、文件概念 (1)文件定义与组成 (2)文件的树形结构组织和目录 (3)文件路径 (4)文件分类 (5)文件操作 二、文件操作File类 (1&…

20230202在AIO-3568J开发板在原厂Android12下增加ll命令

20230202在AIO-3568J开发板在原厂Android12下增加ll命令 2023/2/2 11:50 1、使用EVB2的DTS:rk3568-evb2-lp4x-v10.dts,ENG模式编译。没有ll命令! console:/ $ console:/ $ ll /system/bin/sh: ll: inaccessible or not found 127|console:/ …

ESP-IDF:堆排序测试

堆排序测试 /堆排序测试/ void printheap (int arr[],int length) { for(int i0;i<length;i) { cout<<arr[i]<<" "; } cout<<endl; } void swapheap (int arr[],int a, int b) { int temp arr[a]; arr[a] arr[b]; arr[b] temp; } void he…

【数据库原理与SQL Server应用】Part04——数据库操作

【数据库原理与SQL Server应用】Part04——数据库操作一、数据库基本概念1.1 物理数据库1.1.1 页和区1.1.2 数据库文件1.1.3 文件组1.2 逻辑数据库1.3 SQL Server 的系统数据库和用户数据库1.4 报表服务器和报表数据库二、创建数据库2.1 管理工具界面方式创建数据库2.2 命令行方…

CSS列表与表格

目录 ​编辑 HTML 列表和 CSS 列表属性 不同的列表项目标记 实例 图像作为列表项标记 实例 定位列表项标记 实例 删除默认设置 实例 列表 - 简写属性 实例 设置列表的颜色样式 实例 更多实例 所有 CSS 列表属性 表格边框 实例 全宽表格 实例 双边框 合并…

【数据结构与算法】最小生成树 | 最短路径

&#x1f320;作者&#xff1a;阿亮joy. &#x1f386;专栏&#xff1a;《数据结构与算法要啸着学》 &#x1f387;座右铭&#xff1a;每个优秀的人都有一段沉默的时光&#xff0c;那段时光是付出了很多努力却得不到结果的日子&#xff0c;我们把它叫做扎根 目录&#x1f449;…

【图】邻接表存储图

目录 一、概念 图是什么 各种图的定义 二、图的存储结构 邻接矩阵 邻接表 代码实现邻接表存储图&#xff08;不含权重&#xff09; 一、概念 图是什么 图&#xff08;Graph)是由顶点的有穷非空集合和顶点之间边的集合组成&#xff0c;通常表示为:G(V,E)&#xff0c;其中…

Hystrix断路器执行原理

状态机 Hystrix断路器有三种状态,分别是关闭(Closed)、打开(Open)与半开(Half-Open),三种状态转化关系如下: Closed 断路器关闭:调用下游的请求正常通过Open 断路器打开:阻断对下游服务的调用,直接走 Fallback 逻辑Half-Open 断路器处于半开状态:SleepWindowInMi…

第 14 章python学习知识记录(一)

文章目录前言14.1 numpy的使用14.1.1 数字运算14.1.2 N维数组14.1.3 矩阵运算与广播14.1.4 元素访问14.2 Matplotlib的使用14.2.1 绘制简单图形14.2.2 绘制复杂图形14.2.3 显示图片14.3 os函数14.3.1 获取文件路径14.3.2 路径的基本操作14.4 tqdm的使用14.4.1 tqdm的导入和使用…

docker搭建hadoop和hive集群

一、安装docker并生成相关的镜像&#xff08;1&#xff09;安装docker安装docker教程https://www.runoob.com/docker/centos-docker-install.html只要在终端输入&#xff1a;sudo docker run hello-world后出现如下图的内容就证明安装docker成功了&#xff08;2&#xff09;拉取…

让HTTPS、SSH 共享端口的——工具SSLH

目录 安装 SSLH 配置 Apache 或 Nginx Web 服务器 配置 SSLH 测试 安装 SSLH sudo apt-get install sslh 配置 Apache 或 Nginx Web 服务器 编辑 Web 服务器&#xff08;nginx 或 apache&#xff09;配置文件并找到以下行&#xff1a; listen 443 ssl; 将其修改为&…