昇思25天学习打卡营第21天|DCGAN生成漫画头像

news2024/9/21 2:40:00

DCGAN原理

DCGAN(深度卷积对抗生成网络,Deep Convolutional Generative Adversarial Networks)是GAN的直接扩展。不同之处在于,DCGAN会分别在判别器和生成器中使用卷积和转置卷积层。

它最早由Radford等人在论文Unsupervised Representation Learning With Deep Convolutional Generative Adversarial Networks中进行描述。判别器由分层的卷积层、BatchNorm层和LeakyReLU激活层组成。输入是3x64x64的图像,输出是该图像为真图像的概率。生成器则是由转置卷积层、BatchNorm层和ReLU激活层组成。输入是标准正态分布中提取出的隐向量 z z z,输出是3x64x64的RGB图像。

数据准备与处理

from download import download

url = "https://download.mindspore.cn/dataset/Faces/faces.zip"

path = download(url, "./faces", kind="zip", replace=True)

下载后的数据集目录结构如下:

./faces/faces
├── 0.jpg
├── 1.jpg
├── 2.jpg
├── 3.jpg
├── 4.jpg
    ...
├── 70169.jpg
└── 70170.jpg

数据处理

首先为执行过程定义一些输入:

batch_size = 128          # 批量大小
image_size = 64           # 训练图像空间大小
nc = 3                    # 图像彩色通道数
nz = 100                  # 隐向量的长度
ngf = 64                  # 特征图在生成器中的大小
ndf = 64                  # 特征图在判别器中的大小
num_epochs = 3           # 训练周期数
lr = 0.0002               # 学习率
beta1 = 0.5               # Adam优化器的beta1超参数

import numpy as np
import mindspore.dataset as ds
import mindspore.dataset.vision as vision

def create_dataset_imagenet(dataset_path):
    """数据加载"""
    dataset = ds.ImageFolderDataset(dataset_path,
                                    num_parallel_workers=4,
                                    shuffle=True,
                                    decode=True)

    # 数据增强操作
    transforms = [
        vision.Resize(image_size),
        vision.CenterCrop(image_size),
        vision.HWC2CHW(),
        lambda x: ((x / 255).astype("float32"))
    ]

    # 数据映射操作
    dataset = dataset.project('image')
    dataset = dataset.map(transforms, 'image')

    # 批量操作
    dataset = dataset.batch(batch_size)
    return dataset

dataset = create_dataset_imagenet('./faces')

import matplotlib.pyplot as plt

def plot_data(data):
    # 可视化部分训练数据
    plt.figure(figsize=(10, 3), dpi=140)
    for i, image in enumerate(data[0][:30], 1):
        plt.subplot(3, 10, i)
        plt.axis("off")
        plt.imshow(image.transpose(1, 2, 0))
    plt.show()

sample_data = next(dataset.create_tuple_iterator(output_numpy=True))
plot_data(sample_data)

构造网络

当处理完数据后,就可以来进行网络的搭建了。按照DCGAN论文中的描述,所有模型权重均应从mean为0,sigma为0.02的正态分布中随机初始化。

生成器

生成器G的功能是将隐向量z映射到数据空间。由于数据是图像,这一过程也会创建与真实图像大小相同的 RGB 图像。在实践场景中,该功能是通过一系列Conv2dTranspose转置卷积层来完成的,每个层都与BatchNorm2d层和ReLu激活层配对,输出数据会经过tanh函数,使其返回[-1,1]的数据范围内。

DCGAN论文生成图像如下所示:

dcgangenerator

图片来源:Unsupervised Representation Learning With Deep Convolutional Generative Adversarial Networks.

我们通过输入部分中设置的nzngfnc来影响代码中的生成器结构。nz是隐向量z的长度,ngf与通过生成器传播的特征图的大小有关,nc是输出图像中的通道数。

以下是生成器的代码实现:

import mindspore as ms
from mindspore import nn, ops
from mindspore.common.initializer import Normal

weight_init = Normal(mean=0, sigma=0.02)
gamma_init = Normal(mean=1, sigma=0.02)

class Generator(nn.Cell):
    """DCGAN网络生成器"""

    def __init__(self):
        super(Generator, self).__init__()
        self.generator = nn.SequentialCell(
            nn.Conv2dTranspose(nz, ngf * 8, 4, 1, 'valid', weight_init=weight_init),
            nn.BatchNorm2d(ngf * 8, gamma_init=gamma_init),
            nn.ReLU(),
            nn.Conv2dTranspose(ngf * 8, ngf * 4, 4, 2, 'pad', 1, weight_init=weight_init),
            nn.BatchNorm2d(ngf * 4, gamma_init=gamma_init),
            nn.ReLU(),
            nn.Conv2dTranspose(ngf * 4, ngf * 2, 4, 2, 'pad', 1, weight_init=weight_init),
            nn.BatchNorm2d(ngf * 2, gamma_init=gamma_init),
            nn.ReLU(),
            nn.Conv2dTranspose(ngf * 2, ngf, 4, 2, 'pad', 1, weight_init=weight_init),
            nn.BatchNorm2d(ngf, gamma_init=gamma_init),
            nn.ReLU(),
            nn.Conv2dTranspose(ngf, nc, 4, 2, 'pad', 1, weight_init=weight_init),
            nn.Tanh()
            )

    def construct(self, x):
        return self.generator(x)

generator = Generator()

判别器

如前所述,判别器D是一个二分类网络模型,输出判定该图像为真实图的概率。通过一系列的Conv2dBatchNorm2dLeakyReLU层对其进行处理,最后通过Sigmoid激活函数得到最终概率。

DCGAN论文提到,使用卷积而不是通过池化来进行下采样是一个好方法,因为它可以让网络学习自己的池化特征。

判别器的代码实现如下:

class Discriminator(nn.Cell):
    """DCGAN网络判别器"""

    def __init__(self):
        super(Discriminator, self).__init__()
        self.discriminator = nn.SequentialCell(
            nn.Conv2d(nc, ndf, 4, 2, 'pad', 1, weight_init=weight_init),
            nn.LeakyReLU(0.2),
            nn.Conv2d(ndf, ndf * 2, 4, 2, 'pad', 1, weight_init=weight_init),
            nn.BatchNorm2d(ngf * 2, gamma_init=gamma_init),
            nn.LeakyReLU(0.2),
            nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 'pad', 1, weight_init=weight_init),
            nn.BatchNorm2d(ngf * 4, gamma_init=gamma_init),
            nn.LeakyReLU(0.2),
            nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 'pad', 1, weight_init=weight_init),
            nn.BatchNorm2d(ngf * 8, gamma_init=gamma_init),
            nn.LeakyReLU(0.2),
            nn.Conv2d(ndf * 8, 1, 4, 1, 'valid', weight_init=weight_init),
            )
        self.adv_layer = nn.Sigmoid()

    def construct(self, x):
        out = self.discriminator(x)
        out = out.reshape(out.shape[0], -1)
        return self.adv_layer(out)

discriminator = Discriminator()

模型训练

损失函数

当定义了DG后,接下来将使用MindSpore中定义的二进制交叉熵损失函数BCELoss。

# 定义损失函数
adversarial_loss = nn.BCELoss(reduction='mean')

优化器

这里设置了两个单独的优化器,一个用于D,另一个用于G。这两个都是lr = 0.0002beta1 = 0.5的Adam优化器。

# 为生成器和判别器设置优化器
optimizer_D = nn.Adam(discriminator.trainable_params(), learning_rate=lr, beta1=beta1)
optimizer_G = nn.Adam(generator.trainable_params(), learning_rate=lr, beta1=beta1)
optimizer_G.update_parameters_name('optim_g.')
optimizer_D.update_parameters_name('optim_d.')

训练模型

训练分为两个主要部分:训练判别器和训练生成器。

  • 训练判别器

    训练判别器的目的是最大程度地提高判别图像真伪的概率。按照Goodfellow的方法,是希望通过提高其随机梯度来更新判别器,所以我们要最大化 l o g D ( x ) + l o g ( 1 − D ( G ( z ) ) log D(x) + log(1 - D(G(z)) logD(x)+log(1D(G(z))的值。

  • 训练生成器

    如DCGAN论文所述,我们希望通过最小化 l o g ( 1 − D ( G ( z ) ) ) log(1 - D(G(z))) log(1D(G(z)))来训练生成器,以产生更好的虚假图像。

在这两个部分中,分别获取训练过程中的损失,并在每个周期结束时进行统计,将fixed_noise批量推送到生成器中,以直观地跟踪G的训练进度。

下面实现模型训练正向逻辑:

def generator_forward(real_imgs, valid):
    # 将噪声采样为发生器的输入
    z = ops.standard_normal((real_imgs.shape[0], nz, 1, 1))

    # 生成一批图像
    gen_imgs = generator(z)

    # 损失衡量发生器绕过判别器的能力
    g_loss = adversarial_loss(discriminator(gen_imgs), valid)

    return g_loss, gen_imgs

def discriminator_forward(real_imgs, gen_imgs, valid, fake):
    # 衡量鉴别器从生成的样本中对真实样本进行分类的能力
    real_loss = adversarial_loss(discriminator(real_imgs), valid)
    fake_loss = adversarial_loss(discriminator(gen_imgs), fake)
    d_loss = (real_loss + fake_loss) / 2
    return d_loss

grad_generator_fn = ms.value_and_grad(generator_forward, None,
                                      optimizer_G.parameters,
                                      has_aux=True)
grad_discriminator_fn = ms.value_and_grad(discriminator_forward, None,
                                          optimizer_D.parameters)

@ms.jit
def train_step(imgs):
    valid = ops.ones((imgs.shape[0], 1), mindspore.float32)
    fake = ops.zeros((imgs.shape[0], 1), mindspore.float32)

    (g_loss, gen_imgs), g_grads = grad_generator_fn(imgs, valid)
    optimizer_G(g_grads)
    d_loss, d_grads = grad_discriminator_fn(imgs, gen_imgs, valid, fake)
    optimizer_D(d_grads)

    return g_loss, d_loss, gen_imgs

循环训练网络,每经过50次迭代,就收集生成器和判别器的损失,以便于后面绘制训练过程中损失函数的图像。

import mindspore

G_losses = []
D_losses = []
image_list = []

total = dataset.get_dataset_size()
for epoch in range(num_epochs):
    generator.set_train()
    discriminator.set_train()
    # 为每轮训练读入数据
    for i, (imgs, ) in enumerate(dataset.create_tuple_iterator()):
        g_loss, d_loss, gen_imgs = train_step(imgs)
        if i % 100 == 0 or i == total - 1:
            # 输出训练记录
            print('[%2d/%d][%3d/%d]   Loss_D:%7.4f  Loss_G:%7.4f' % (
                epoch + 1, num_epochs, i + 1, total, d_loss.asnumpy(), g_loss.asnumpy()))
        D_losses.append(d_loss.asnumpy())
        G_losses.append(g_loss.asnumpy())

    # 每个epoch结束后,使用生成器生成一组图片
    generator.set_train(False)
    fixed_noise = ops.standard_normal((batch_size, nz, 1, 1))
    img = generator(fixed_noise)
    image_list.append(img.transpose(0, 2, 3, 1).asnumpy())

    # 保存网络模型参数为ckpt文件
    mindspore.save_checkpoint(generator, "./generator.ckpt")
    mindspore.save_checkpoint(discriminator, "./discriminator.ckpt")

结果展示

运行下面代码,描绘DG损失与训练迭代的关系图:

plt.figure(figsize=(10, 5))
plt.title("Generator and Discriminator Loss During Training")
plt.plot(G_losses, label="G", color='blue')
plt.plot(D_losses, label="D", color='orange')
plt.xlabel("iterations")
plt.ylabel("Loss")
plt.legend()
plt.show()

可视化训练过程中通过隐向量fixed_noise生成的图像。

import matplotlib.pyplot as plt
import matplotlib.animation as animation

def showGif(image_list):
    show_list = []
    fig = plt.figure(figsize=(8, 3), dpi=120)
    for epoch in range(len(image_list)):
        images = []
        for i in range(3):
            row = np.concatenate((image_list[epoch][i * 8:(i + 1) * 8]), axis=1)
            images.append(row)
        img = np.clip(np.concatenate((images[:]), axis=0), 0, 1)
        plt.axis("off")
        show_list.append([plt.imshow(img)])

    ani = animation.ArtistAnimation(fig, show_list, interval=1000, repeat_delay=1000, blit=True)
    ani.save('./dcgan.gif', writer='pillow', fps=1)

showGif(image_list)

dcgan

从上面的图像可以看出,随着训练次数的增多,图像质量也越来越好。如果增大训练周期数,当num_epochs达到50以上时,生成的动漫头像图片与数据集中的较为相似,下面我们通过加载生成器网络模型参数文件来生成图像,代码如下:

# 从文件中获取模型参数并加载到网络中
mindspore.load_checkpoint("./generator.ckpt", generator)

fixed_noise = ops.standard_normal((batch_size, nz, 1, 1))
img64 = generator(fixed_noise).transpose(0, 2, 3, 1).asnumpy()

fig = plt.figure(figsize=(8, 3), dpi=120)
images = []
for i in range(3):
    images.append(np.concatenate((img64[i * 8:(i + 1) * 8]), axis=1))
img = np.clip(np.concatenate((images[:]), axis=0), 0, 1)
plt.axis("off")
plt.imshow(img)
plt.show()

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1926734.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【软件建模与设计】-03-软件生存周期模型和过程

目录 1、瀑布模型 2、抛弃型原型 3、演化式-增量模型 4、螺旋模型 5、统一软件开发过程RUP 6、设计验证和确认 6.1、软件质量保证 6.2、软件设计的性能分析 7、软件生存周期的活动 7.1、需求分析和规约 7.2、体系结构设计 7.3、详细设计 7.4、编码 8、软件测试 …

element-ui 插槽自定义样式怎么居中

场景:使用element-ui组件,scope内部自定义样式导致的错位 效果图: 解决思路: template标签可理解为一个内嵌组件,宽高重新定义,可在自定义内容外层套一层盒子,让盒子占满所有空间,再…

DBA 数据库管理 表管理 数据批量处理。表头约束

表管理 建库 库名命名规则:仅可以使用数字、字母、下划线、不能纯数字 不可使用MySQL命令或特殊字符 库名区分字母大小写 加if not exists 命令避免重名报错 create database if not exists gamedb; 建表 drop database if exists gamedb ; 删表…

从JDK源码探究Java线程与操作系统的交互

文章目录 从JDK源码探究Java线程与操作系统的交互一、序言二、线程基础概念1、操作系统线程实现方式(1)内核级线程(Kernel-Level Thread)(2)用户级线程(User-Level Thread)&#xff…

【DevOps系列】DevOps简介及基础环境安装

作者:后端小肥肠 目录 1. 前言 2. DevOps(详细介绍) 3. Code阶段工具 3.1 Git安装 3.2 GitLab安装 4. Build阶段工具 5. Operate阶段工具 5.1 Docker安装 5.2 Docker-Compose安装 6. Integrate工具 6.1 Jenkins介绍 6.2 Jenkins安…

8-1 搭建solidity开发环境,自己定制一个truffle

8-1 搭建solidity开发环境,自己定制一个truffle(react区块链实战) 从零开始搭建一个项目 自己实现一套类似truffle的自动编译系统,加深理解 此处可以跳过无需自己实现编译合约的模块,使用已有的truffle模块即可 项目…

SSM框架学习笔记(仅供参考)

(当前笔记简陋,仅供参考) 第一节课: (1)讲述了Spring框架,常用jar包,以及框架中各个文件的作用 (2)演示了一个入门程序 (3)解释了…

TS 入门(二):Typescript类型与类型注解

目录 前言回顾1. 基本类型数字类型 (number)字符串类型 (string)布尔类型 (boolean)空值和未定义 (null 和 undefined)任意类型 (any)unknown 类型any 与 unkown 区别 2. 数组和元组类型数组类型元组类型 3. 枚举类型4. 类型注解示例指定变量类型函数参数和返回值类型注解类型推…

在浏览器控制台中输出js对象,为什么颜色不同,有深有浅

打开console,输入自定义的javascript对象的时候,打开看发现对象的属性是深紫色,后面有一些对象是浅紫色的,比如Array对象和一堆SVG,HTML,CSS开头的对象,常用的prototype和__proto__也是浅紫色的。 请问这里深紫和浅紫…

9. Python3 Numpy科学计算库

Numpy是Python科学计算库的基础,主要包括: 强大的N维数组对象和向量运算。一些复杂的功能。与C和FORTRAN代码的集成。实用的线性代数运算、傅里叶变换、随机数生成等。 9.1 Numpy基础 Numpy的主要对象是一个均匀的多维数组。Numpy提供了各种函数。可以…

pxe高效网络批量装机

文章目录 一, PXE远程安装服务(一)三种系统装机的方式(二)linux装机1. 加载 Boot Loader2. 加载启动安装菜单3. 加载内核和 initrd4. 加载根文件系统5. 运行 Anaconda 安装向导 (三)实现过程&am…

STM32使用CubeMX创建HAL库工程文件

文章目录 1. STM32CubeMX 2. 界面介绍 3. 使用教程 新建工程 选择芯片界面 ​编辑 配置页面 引脚配置页面 引脚配置界面的颜色指示 配置RCC时钟参数 配置SYS参数 配置时钟树 Project Manager项目管理配置 生成工程文件 KEIL代码编写 1. STM32CubeMX STM32CubeM…

得物六宫格验证码分析

声明(lianxi a15018601872) 本文章中所有内容仅供学习交流使用,不用于其他任何目的,抓包内容、敏感网址、数据接口等均已做脱敏处理,严禁用于商业用途和非法用途,否则由此产生的一切后果均与作者无关! 前言(lianxi a…

【自学网络安全】二、防火墙NAT智能选路综合实验

任务要求: (衔接上一个实验所以从第七点开始,但与上一个实验关系不大) 7,办公区设备可以通过电信链路和移动链路上网(多对多的NAT,并且需要保留一个公网IP不能用来转换) 8,分公司设备可以通过总…

LeetCode 算法:电话号码的字母组合 c++

原题链接🔗:电话号码的字母组合 难度:中等⭐️⭐️ 题目 给定一个仅包含数字 2-9 的字符串,返回所有它能表示的字母组合。答案可以按 任意顺序 返回。 给出数字到字母的映射如下(与电话按键相同)。注意 …

线程-I.MX6U嵌入式Linux C应用编程学习笔记基于正点原子阿尔法开发板

线程 线程概念 简介 线程定义:线程是操作系统进行调度的最小单位,包含在进程内,是进程中的实际执行单元 线程特性:一个线程代表进程中的一个单一顺序控制流,即执行路径 多线程应用:一个进程可以包含多个…

LabVIEW红外热波图像缺陷检

开发使用LabVIEW开发的红外热波图像缺陷检测系统。该系统结合红外热像仪、工业相机和高效的数据采集硬件,实现对工件表面缺陷的自动检测和分析。通过LabVIEW的强大功能,系统能够实时采集、处理和显示红外热波图像,有效提高了检测的精度和效率…

时域分析----移动平均滤波器介绍及其在金融应用示例

介绍 移动平均滤波器(Moving Average Filter)是一种基本但功能强大的信号处理技术,广泛应用于各种数据平滑和去噪任务中。其主要目的是通过对数据进行平均处理,减少随机波动和噪声,从而突出数据中的趋势和规律。移动平…

Win11任务栏当中对 STM32CubeMX 的堆叠问题

当打开多个 CubeMX 程序的时候,Win11 自动将其进行了堆叠,这时候就无法进行预览与打开。 问题分析:大部分ST的工具都是基于 JDK 来进行开发的,Win11 将其识别成了同一个 Binary 但是实际上他们并不是同一个,通过配置…

数据治理项目中,数据运营团队如何搭建能提升数据应用效果?

引言:在数据治理项目中,数据运营团队的搭建对于提升数据应用效果具有关键作用。以下是一些具体的步骤和策略,用于构建高效的数据运营团队以优化数据应用效果: 一、明确团队目标和职责 确定数据应用目标:首先&#xf…