LLM基础模型系列:Fine-Tuning总览

news2024/11/15 21:50:17

由于对大型语言模型,人工智能从业者经常被问到这样的问题:如何训练自己的数据?回答这个问题远非易事。生成式人工智能的最新进展是由具有许多参数的大规模模型驱动的,而训练这样的模型LLM需要昂贵的硬件(即许多具有大量内存的昂贵GPU)和花哨的训练技术(例如,完全分片的数据并行训练)。

幸运的是,这些模型通常分两个阶段进行训练——预训练和微调。其中前一个阶段(要)昂贵得多。鉴于高质量的预训练LLMs很容易在网上获得,大多数人工智能从业者可以简单地下载一个预训练的模型,并专注于使这个模型(通过微调)适应他们想要的任务。

“就所需的硬件和为不同任务托管独立实例的存储/交换成本而言,微调庞大的语言模型的成本高得令人望而却步。”

模型的大小并没有在微调过程中改变。因此微调一个LLM虽然比预训练便宜,可是也不是易事,仍然需要训练技术和硬件来处理这样的模型。每次微调运行都会创建一个完全独立的“副本”。

参数高效微调(PEFT)是微调一种比较好的技术,它不是端到端地训练完整的模型,而是固定预训练的模型权重,并且在微调期间仅调整少量特定于任务的参数。这种方法大大减少了内存开销,简化了存储/部署过程,并允许使用更易于访问的硬件进行微调LLMs。

微调与转移学习

首先先来明确两个概念,微调和转移学习。转移学习是将一个通用的预训练模型应用到全新的但是相关领域的过程。而微调是将通用的预训练模型进一步的训练。一般而言,微调是包含转移学习的。

上图展示了预训练,特征提取和微调的过程,预训练就是使用训练数据直接训练基础模型,比较常见的有T5,BloombergGPT,GPT-4。特征提取一般是利用基础模型进行内容的Embedding,然后在另接其他的模型进行预测,例如Bert。微调是利用训练数据训练完基础模型,然后采用微调技术(例如更新部分参数,更新所有层或者额外添加层)进行二次训练。

微调和Prompt Engineering(通过提示词优化结果,基础模型的参数是冻结的,经常在论文中会用雪花图标标识)不同,它重新精校模型参数的数值。若是全部精校所有的参数,读者需要大量的计算资源。

上图为2018年的一篇论文的插图,有三幅图片分别代表着:a为预训练,b为全量参数微调,c为分类器微调。

Instruction-tuned就是全量微调中的一种,FLAN在基础模型上面,通过指令调整(在通过指令描述的数据集集合上微调语言模型)可以显著提高未见任务的零样本性能。它采用 137B参数预训练语言模型,并在通过自然语言指令模板表达的60多个NLP数据集上对其进行指令调整。

FLAN 显著提高了其未修改版本的性能,并在评估的25个数据集中的20个数据集上超越了零样本175B GPT-3。FLAN 甚至在 ANLI、RTE、BoolQ、AI2-ARC、OpenbookQA和StoryCloze上的表现远远优于少样本 GPT-3。消融研究表明,微调数据集的数量、模型规模和自然语言指令是指令调整成功的关键。大白话而言,它将这些数据集根据不同的模版构建不同的指令训练样本,然后再次训练模型:

全量微调是美味的,但是若没有太多的计算资源,那么存在两种方法可以在有限的资源下将模型调教得较为服帖。一 种是X-shot Prompt,这点在介绍Dspy的时候说过了。另外一种是高效参数微调(微调部分参数),简称PEFT(Parameter-efficient fine tuning)。本系列还是会将重点放在PEFT的技术上面。

PEFT概览

最后先来看看PEFT的技术分类和全景图,大致可分为四类:

  • Additive PEFT:通过注入新的可训练模块或参数来修改模型架构;Selective PEFT:使选择部分的参数子集在微调期间可训练,其余的冻结;

  • Reparameterization PEFT:将原来的参数重新结构化,比如用低轶矩阵重新表示以进行训练,然后等效地将其转换推理。

  • Hybrid PEFT,它结合了不同PEFT方法的优点,建立了一个统一的PEFT模型。

上图为各种算法,都是围绕着各种主流微调技术的微调方法,比如之前的文章已经介绍过的LoRA,后续将围绕这根主线开展学习之旅。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1920445.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

常见 Web漏洞分析与防范研究

前言: 在当今数字化时代,Web应用程序扮演着重要的角色,为我们提供了各种在线服务和功能。然而,这些应用程序往往面临着各种潜在的安全威胁,这些威胁可能会导致敏感信息泄露、系统瘫痪以及其他不良后果。 SQL注入漏洞 …

自主研发接口测试框架

测试任务:将以前完成的所有的脚本统一改写为unitest框架方式 1、需求原型 1.1 框架目录结构 V1.0:一般的设计思路分为配置层、脚本层、数据层、结果层,如下图所示 V 2.0:加入驱动层testdriver 1.2 框架各层需要完成的工作 1、配…

【CT】LeetCode手撕—70. 爬楼梯

目录 题目1- 思路2- 实现⭐70. 爬楼梯——题解思路 3- ACM实现 题目 原题连接&#xff1a;70. 爬楼梯 1- 思路 思路 爬楼梯 ——> 动规五部曲 2- 实现 ⭐70. 爬楼梯——题解思路 class Solution {public int climbStairs(int n) {if(n<1){return 1;}// 1. 定义 dp 数…

html5——CSS基础选择器

目录 标签选择器 类选择器 id选择器 三种选择器优先级 标签指定式选择器 包含选择器 群组选择器 通配符选择器 Emmet语法&#xff08;扩展补充&#xff09; 标签选择器 HTML标签作为标签选择器的名称&#xff1a; <h1>…<h6>、<p>、<img/> 语…

数据平滑处理(部分)

一、 移动平均&#xff08;Moving Average&#xff09; 是一种最简单的数据平滑方法&#xff0c;用于平滑时间序列数据。它通过计算一定窗口内数据点的平均值来减少噪音&#xff0c;同时保留数据的趋势。移动平均包括简单移动平均&#xff08;SMA&#xff09;或指数加权移动平均…

初始网络知识

前言&#x1f440;~ 上一章我们介绍了使用java代码操作文件&#xff0c;今天我们来聊聊网络的一些基础知识点&#xff0c;以便后续更深入的了解网络 网络 局域网&#xff08;LAN&#xff09; 广域网&#xff08;WAN&#xff09; 路由器 交换机 网络通信基础 IP地址 端…

可观察性优势:掌握当代编程技术

反馈循环是我们开发人员工作的关键。它们为我们提供信息&#xff0c;并让我们从用户过去和现在的行为中学习。这意味着我们可以根据过去的反应进行主动开发。 TestComplete 是一款自动化UI测试工具&#xff0c;这款工具目前在全球范围内被广泛应用于进行桌面、移动和Web应用的…

“闭门造车”之多模态思路浅谈:自回归学习与生成

©PaperWeekly 原创 作者 | 苏剑林 单位 | 科学空间 研究方向 | NLP、神经网络 这篇文章我们继续来闭门造车&#xff0c;分享一下笔者最近对多模态学习的一些新理解。 在前文《“闭门造车”之多模态思路浅谈&#xff1a;无损》中&#xff0c;我们强调了无损输入对于理想的…

压缩文件的解析方式

我们常用的压缩文件有两种&#xff1a;后缀为.zip或者.rar&#xff0c;接下来将介绍解析两种压缩文件的代码。需要用到三个jar包&#xff1a;commons-io-2.16.1.jar、junrar-7.5.5.jar、slf4j-api-2.0.13.jar&#xff0c;可以在官网下载&#xff0c;也可以发私信。 这段代码是一…

2.GAP:通用访问协议

GAP的简单理解 GAP这个名字&#xff0c;直接翻译过来不好理解。 简单点可以理解为&#xff1a; 这是蓝牙设备在互联之前&#xff0c;过程中&#xff0c;第一个用于交流的协议。在代码上&#xff0c;会给这个协议实现&#xff0c;连接参数的设置&#xff0c;连接事件的实现&am…

【算法】二叉树-迭代法实现前后中序遍历

递归的实现就是:每一次递归调用都会把函数的局部变量&#xff0c;参数值和返回地址等压入调用栈中&#xff0c;然后递归返回的时候&#xff0c;从栈顶弹出上一次递归的各项参数&#xff0c;这就是递归为什么可以返回上一层位置的原因 可以用栈实现二叉树的前中后序遍历 1. 前序…

【数学趣】拉窗帘模型之求面积引发的6个解法

抖音上推了一个趣题 题 求橙色部分的面积 蓝色部分是2个正方形。大的正方形边长为6。&#xff08;小的正方形一半被一个黄色三角形遮住了一半&#xff09; 答案 18 解法1&#xff1a;拉窗帘 先写一个代号&#xff0c;方便证明&#xff0c;H G 代表正方形。&#xff08;G…

AV1 编码标准中帧内预测技术详细说明

AV1 编码标准帧内预测 AV1&#xff08;AOMedia Video 1&#xff09;是一种开源的视频编码格式&#xff0c;旨在提供比现有标准更高的压缩效率和更好的视频质量。在帧内预测方面&#xff0c;AV1相较于其前身VP9和其他编解码标准&#xff0c;如H.264/AVC和H.265/HEVC&#xff0c;…

暑假第一次作业

第一步&#xff1a;给R1,R2,R3,R4配IP [R1-GigabitEthernet0/0/0]ip address 192.168.1.1 24 [R1-Serial4/0/0]ip address 15.0.0.1 24 [R2-GigabitEthernet0/0/0]ip address 192.168.2.1 24 [R2-Serial4/0/0]ip address 25.0.0.1 24 [R3-GigabitEthernet0/0/0]ip address 192.…

【Mutilism用74ls192和与非门设计3进制24进制加法计数器2荔枝】2022-5-10

缘由【数电 数字逻辑】如何用74ls192和与非门设计任意进制加法计数器&#xff1f;-嵌入式-CSDN问答

Qt学生管理系统(付源码)

Qt学生管理系统 一、前言1.1 项目介绍1.2 项目目标 2、需求说明2.1 功能性说明2.2 非功能性说明 三、UX设计3.1 登录界面3.2 学生数据展示3.3 信息插入和更新 三、架构说明3.1 客户端结构如下3.2 数据流程图3.2.1 数据管理3.2.2 管理员登录 四、 设计说明3.1 数据库设计3.2 结构…

基于Python+Flask+MySQL的新冠疫情可视化系统

基于PythonFlaskMySQL的新冠疫情可视化系统 FlaskMySQL 基于PythonFlaskMySQL的新冠疫情可视化系统 项目主要依赖前端&#xff1a;layui&#xff0c;Echart&#xff0c;后端主要是Flask&#xff0c;系统的主要支持登录注册&#xff0c;Ecahrt构建可视化图&#xff0c;可更换主…

Qt 统计图编程

学习目标&#xff1a;Qt 折线图&#xff0c;柱形图和扇形统计图编程 学习基础 Qt QChart 曲线图表操作-CSDN博客 学习内容 Qt中绘制三种常见的图表非常方便, 主要步骤如下: 1. 折线图: - 使用QLineSeries定义折线数据,添加多个坐标点 - 使用QValueAxis创建X轴和Y轴 - 将…

数据结构——查找算法

文章目录 1. 查找算法 2. 顺序查找 2. 二分查找 1. 查找算法 查找算法是用于在数据集中定位特定元素的位置的算法。查找是计算机科学中一项基本操作&#xff0c;几乎在所有应用程序中都需要使用。例如&#xff0c;数据库查询、信息检索、字典查找等都涉及到查找操作。查找算…

【Mutilism数字电路实现32进制5线32译码器】2022-5-7

缘由3-8译码器到74HC138-编程语言-CSDN问答 2片16004非门2个组成8进制和4进制实现。 按138逻辑表把E3也接入置零&#xff0c;同时把E1也接入反向使得切换时138保持高电平输出&#xff0c;就看不到转换时第一个出现短暂低电平&#xff0c;是最完美的解决方案&#xff0c;二级反向…