【密码学基础】基于LWE(Learning with Errors)的全同态加密方案

news2024/9/21 10:52:18

学习资源:
全同态加密I:理论与基础(上海交通大学 郁昱老师)
全同态加密II:全同态加密的理论与构造(Xiang Xie老师)


现在第二代(如BGV和BFV)和第三代全同态加密方案都是基于LWE构造的,现在先进的全同态方案也都是基于LWE的,所以本文总结一下LWE的基础知识。
首先考虑,我们希望加密一个数 s s s, 现在用一系列的 a i a_i ai s s s进行加密,得到 a i s a_is ais,实际上通过求解最大公约数GCD就能求解出 s s s。但是,如果加上一个随机噪声 e i e_i ei,得到 a i s + e i a_is+e_i ais+ei,那么将难以求解出 s s s的值。这个过程就是我对LWE的简单理解,所谓error就是一个noise。

在这里插入图片描述

全同态加密的计算过程分为三步:密钥生成KeyGen、加密Enc、同态计算Eval、解密Dec。、

KeyGen:

在这里插入图片描述
首先构造出如上的等式, s ⋅ A + e = s A + e s\cdot A + e = sA+e sA+e=sA+e,然后得到公钥pk( − A -A A s A + e sA+e sA+e的拼接),以及私钥sk( s s s和1的拼接)。于是得到pk和sk满足相乘后的结果是随机噪声e(接近0)。

Enc:

加密用的公钥pk,r是一个只包含0或1的随机向量,m是待加密的信息(放在向量的最低位上)。
在这里插入图片描述
在这里插入图片描述

Dec:

解密用的私钥sk,和ct计算完内积后求mod 2得到解密结果。

在这里插入图片描述
正确性证明:
在这里插入图片描述
sk和pk相乘得到2e(KeyGen时满足的条件),然后和r做内积得到一个很小的偶数噪声,最终的结果就是m+很小的偶数噪声,于是通过mod 2就能将噪声消除,得到解密结果m。这也就是为什么构造的噪声是2e,而不是e,我的理解就是希望通过构造偶数的随机噪声,从而在解密时方便用mod 2的方式消除掉噪声。

安全性证明:

在这里插入图片描述
当pk是伪随机的,r具有足够高的熵(也就是随机性很强?)时,pk和pk乘r都是伪随机的。自然和带m的向量相加后,加密结果也是伪随机的。

在这里插入图片描述

下面是Xiang Xie老师的公式化描述:
加密公式:密文c = 公钥pk ✖️ 随机r + 明文m
解密公式:明文m = <密文sk, 私钥sk> mod q mod 2

在这里插入图片描述
在这个基础上,再mod 2就能解密出明文m的值。只要噪声够小,就能保证正确性。
这里有个需要区分的事情:以上 P K = ( A , b = A s ′ + 2 e ) PK=(A, b=As'+2e) PK=(A,b=As+2e)是BGV方案,BFV则是 P K = ( A , b = A s ′ + e ) PK=(A, b=As'+e) PK=(A,b=As+e),区别是BGV将信息编码在低位,而BFV将消息编码在高位(学习BFV的时候会说明)。

Eval(加法同态和乘法同态):

在这里插入图片描述
注意到同态加法或乘法都会带来显著的噪声累积,并且乘法是呈平方增长趋势。
然后说说如何解密同态乘的结果,下面的式子可以看到:两个密文做乘法,等价于密文和私钥分别先做tensor product,然后再做内积。因此,显然密文和私钥的大小都翻了一倍。Example是一个等价性的证明。

在这里插入图片描述

那么问题来了,如何将同态乘之后的密文大小和私钥大小都恢复回去呢?这就是Key Switching解决的问题。

下面是Xiang Xie老师的描述:

在这里插入图片描述

Key Switching

目标是将密文和私钥的大小恢复到线性大小。
在这里插入图片描述
现在求密文c1和c2的乘法:

在这里插入图片描述
在这里插入图片描述

以上过程基于比特分解这个概念:

在这里插入图片描述

下面是Xiang Xie老师的描述:

Key Switching的目标:将私钥 s ~ \tilde s s~下的 c ~ \tilde c c~ 转换为 私钥 s s s下的 c c c,并且 c ~ \tilde c c~ c c c都是加密的同一个明文。
这里有一个核心概念是Key Switching Key (KSK),也就是用私钥 s s s来加密 s ~ \tilde s s~

在这里插入图片描述
通过Key Switching过程,可以推导出私钥从 s ⊗ s s\otimes s ss变成了线性的 s s s,同时密文从 c ~ \tilde c c~变成了线性的 c c c。并且通过最后一行式子可以看出,Key Switching后的 ⟨ c , s ⟩ \langle c, s\rangle c,s和原来的 ⟨ c ~ , s ⊗ s ⟩ \langle \tilde c, s\otimes s\rangle c~,ss之间相差了一个噪声 2 c ~ T e ~ 2\tilde c^T\tilde e 2c~Te~,这部分是可以非常大的!所以到这里仍然没办法实现Key Switching。

这里引入了一个Gadget矩阵G:
在这里插入图片描述
于是,Key Switching的过程变成了下面这样:

在这里插入图片描述
此时,增加的误差就非常小了。
总结一下就是,通过Key Switching,原来私钥 s ~ = s ⊗ s \tilde s=s \otimes s s~=ss下的 c ~ = c ⊗ c \tilde c=c\otimes c c~=cc,被转换成了私钥 s s s下的 c c c,注意Key Switching后的 s , c s, c s,c都不是原来的值了(double check)。

在这里插入图片描述
对于BGV,加法的噪声线性增长,乘法的噪声平方增长,Key Switching虽然可以支持乘法了(限制sk变得特别大),但是实际上噪声是在原本乘法噪声基础上加了一个很小的噪声,总体也非常大。因此需要进一步降低这个噪声。

Modulus Reduction

在这里插入图片描述
到这里,通过LWE实现了很小深度的同态乘法和加法计算,key switching则是对每层用新的密钥,但是随着计算深度加深,噪声的扩大是爆炸性的,因此还不是一个levelled FHE(能计算指定深度的FHE)。
现在我们希望不借助bootstrapping,实现一个能计算一定深度的FHE,需要用到模数变换。
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

暂时没太看懂中间的流程,简而言之就是将密文c从模q的域变换到模p的域上(p<<q),于是噪声等比例缩小,也就是大约缩小到原来的p/q倍。
下面是一个具体的例子:
如果不做Modulus Reduction,随着深度加深,噪声呈双指数趋势增长,level >= 3之后就会带来解密错误。
在这里插入图片描述
如果每个level上做Modulus Reduction,那么噪声也会被维持在一个绝对值范围内,代价就是模数会不断减小。

在这里插入图片描述

所以要想实现一个levelled FHE,可以设置一个模数 B d B^d Bd,然后就可以计算一个深度为 d d d的电路了(其中 B B B是刷新后密文的噪声上界)。计算完 d d d的深度后,模数应该是降低到 B B B,要保证此时解密不出错。BGV就是一种levelled FHE。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1908315.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

数据集 | 人脸公开数据集的介绍及下载地址

本文介绍了人脸相关算法的数据集。 1.人脸数据集详情 1.1.Labeled Faces in the Wild (LFW) 论文 下载地址&#xff1a;LFW Face Database : Main (umass.edu) 是目前人脸识别的常用测试集&#xff0c;其中提供的人脸图片均来源于生活中的自然场景&#xff0c;因此识别难度会…

表情包原理

https://unicode.org/Public/emoji/12.1/emoji-zwj-sequences.txt emoji 编码规则介绍_emoji编码-CSDN博客 UTS #51: Unicode Emoji C UTF-8编解码-CSDN博客 创作不易&#xff0c;小小的支持一下吧&#xff01;

数据结构练习

1. 快速排序的非递归是通过栈来实现的&#xff0c;则前序与层次可以通过控制入栈的顺序来实现&#xff0c;因为递归是会一直开辟栈区空间&#xff0c;所以非递归的实现只需要一个栈的大小&#xff0c;而这个大小是小于递归所要的&#xff0c; 非递归与递归的时间复杂度是一样的…

Docker Desktop如何换镜像源?

docker现在很多镜像源都出现了问题,导致无法拉取镜像,所以找到一个好的镜像源,尤为重要。 一、阿里镜像源 经过测试,目前,阿里云镜像加速地址还可以使用。如果没有阿里云账号,需要先注册一个账号。 地址:https://cr.console.aliyun.com/cn-hangzhou/instances/mirrors 二…

[Flink]三、Flink1.13

11. Table API 和 SQL 如图 11-1 所示&#xff0c;在 Flink 提供的多层级 API 中&#xff0c;核心是 DataStream API &#xff0c;这是我们开发流 处理应用的基本途径&#xff1b;底层则是所谓的处理函数&#xff08; process function &#xff09;&#xff0c;可以访…

User parameters 用户参数与Web监控

目录 一. 自定义键介绍 二. 制作步骤 1. 添加无可变部分参数 2. 添加有可变参数 3. 使用用户参数监控php-fpm 服务的状态 三. Web页面导入应用监控 四. Web监控 主要功能和操作&#xff1a; 开启方式 官方预定义监控项文档https://www.zabbix.com/documentation/6…

fastjson-1.2.24漏洞复现

文章目录 0x01 前言0x02 环境0x03漏洞复现环境准备 0x04 漏洞分析利用链源码分析 0x05 总结0x06 可能遇到的坑 0x01 前言 影响版本 fastjson < 1.2.24 本文出于学习fastjson漏洞的目的&#xff0c;为了能更好的复现漏洞&#xff0c;需要有以下前置知识。 springbootfastj…

刷代码随想录有感(129):动态规划——两个字符串的删除操作

题干&#xff1a; 代码&#xff1a; class Solution { public:int minDistance(string word1, string word2) {vector<vector<int>>dp(word1.size() 1, vector<int>(word2.size() 1, 0));for(int i 1; i < word1.size(); i){for(int j 1; j < wor…

15个最佳WooCommerce商城网站及其主要功能

正在寻找的WooCommerce商城网站来激发灵感&#xff1f; 在动态的在线购物世界中&#xff0c;WooCommerce 就像企业的超级英雄。它帮助他们轻松创建强大而可靠的在线商店&#xff0c;并与WordPress顺畅协作。 从创新的产品展示到简化的结账流程&#xff0c;每个特色网站都拥有…

724.力扣每日一题7/8 Java

博客主页&#xff1a;音符犹如代码系列专栏&#xff1a;算法练习关注博主&#xff0c;后期持续更新系列文章如果有错误感谢请大家批评指出&#xff0c;及时修改感谢大家点赞&#x1f44d;收藏⭐评论✍ 目录 思路 解题方法 时间复杂度 空间复杂度 Code 思路 主要基于数组的…

解析Xml文件并修改QDomDocument的值

背景&#xff1a; 我需要解决一个bug&#xff0c;需要我从xml中读取数据到QDomDocument&#xff0c;然后获取到我想要的目标信息&#xff0c;然后修改该信息。 ---------------------------------------------------------------------------------------------------------…

PPO控制人形机器人行走举例

PPO控制人形机器人行走 Proximal Policy Optimization (PPO) 是一种策略优化算法,在强化学习中广泛使用。它通过改进策略梯度方法,使得训练过程更加稳定和高效。 PPO算法原理介绍 PPO算法主要有两种变体:PPO-Clip 和 PPO-Penalty。这里主要介绍PPO-Clip,因为它更常用。 …

RecyclerView

1、导入RecyclerView包 2、在activity_main.xml中创建RecyclerView <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas.android.com/apk/res/android"android:layout_width"match_parent"…

Face_recognition实现人脸识别

这里写自定义目录标题 欢迎使用Markdown编辑器一、安装人脸识别库face_recognition1.1 安装cmake1.2 安装dlib库1.3 安装face_recognition 二、3个常用的人脸识别案例2.1 识别并绘制人脸框2.2 提取并绘制人脸关键点2.3 人脸匹配及标注 欢迎使用Markdown编辑器 本文基于face_re…

@Builder注解详解:巧妙避开常见的陷阱

欢迎来到我的博客&#xff0c;代码的世界里&#xff0c;每一行都是一个故事 &#x1f38f;&#xff1a;你只管努力&#xff0c;剩下的交给时间 &#x1f3e0; &#xff1a;小破站 Builder注解详解&#xff1a;巧妙避开常见的陷阱 前言1. Builder的基本使用使用示例示例类创建对…

Java——面试题

1、JDK 和 JRE 有什么区别&#xff1f; JDK&#xff08;Java Development Kit&#xff09;&#xff0c;Java开发工具包 JRE&#xff08;Java Runtime Environment&#xff09;&#xff0c;Java运行环境 JDK中包含JRE&#xff0c;JDK中有一个名为jre的目录&#xff0c;里面包含…

电子发票管理系统-计算机毕业设计源码99719

摘 要 本文旨在设计和实现一个基于SpringBoot的电子发票管理系统&#xff0c;以提升企业的发票管理效率和准确性。随着电子化发票管理的需求增加&#xff0c;企业需要一个高效、可靠且功能丰富的系统来帮助管理发票信息。基于SpringBoot的电子发票管理系统将提供诸如发票信息、…

多数据源及其连接池的配置、事务管理器的注册和使用

&#xff08;ps&#xff1a;如果只有这几个数据源&#xff0c;请选择一个默认的数据源和对应的事务管理器均加上Primary注解&#xff09;示例&#xff1a; 1.在yml文件中配置多数据源/池的信息 spring:datasource:type: com.alibaba.druid.pool.DruidDataSourcedruid:initia…

nodejs + vue3 模拟 fetchEventSouce进行sse流式请求

先上效果图: 前言: 在GPT爆发的时候,各项目都想给自己的产品加上AI,蹭上AI的风口,因此在最近的一个需求,就想要给项目加入Ai的功能,原本要求的效果是,查询到对应的数据后,完全展示出来,也就是常规的post请求,后来这种效果遇到了一个很现实的问题:长时间的等待。我…

SCI三区|儿童学习优化算法KLO:基于社会进化和认知学习的优化算法

目录 1.背景2.算法原理2.1算法思想2.2算法过程 3.结果展示4.参考文献5.代码获取 1.背景 2024年&#xff0c;ST Javed受到社会环境下家庭儿童的早期社会学习行为启发&#xff0c;提出了儿童学习优化算法&#xff08;Kids Learning Optimizer, KLO&#xff09;。 2.算法原理 2.…