JVM专题之G1垃圾收集器下

news2024/9/21 21:43:33

索引(记录)的源码的工作流程图如下:

CSet(Collection Set 回收集合)

收集集合(CSet)代表每次GC暂停时回收的一系列目标分区。在任意一次收集暂停中,CSet所有分区都会被释放,内部存活的对象都会被转移到分配的空闲分区中。因此无论是年轻代收集,还是混合收集,工作的机制都是一致的。年轻代收集CSet只容纳年轻代分区,而混合收集会通过启发式算法,在老年代候选回收分区中,筛选出回收收益最高的分区添加到CSet中。

CSet根据两种不同的回收类型分为两种不同CSet。


1.CSet of Young Collection
2.CSet of Mix Collection
CSet of Young Collection 只专注回收 Young Region 跟 Survivor Region ,而CSet of Mix Collection 模式下的CSet 则会通过RSet计算Region中对象的活跃度,

活跃度阈值-XX:G1MixedGCLiveThresholdPercent(默认85%),只有活跃度高于这个阈值的才会准入CSet,混合模式下CSet还可以通过-XX:G1OldCSetRegionThresholdPercent(默认10%)设置,CSet跟整个堆的比例的数量上限。

App Thread (用户线程)

这个很简单,App thread 就是执行一个java程序的业务逻辑,实际运行的一些线程。

Concurrence Refinement Thread(同步优化线程)

这个线程主要用来处理代间引用之间的关系用的。当赋值语句发生后,G1通过Writer Barrier技术,跟G1自己的筛选算法,筛选出此次索引赋值是否是跨区(Region)之间的引用。如果是跨区索引赋值,在线程的内存缓冲区写一条log,一旦日志缓冲区写满,就重新起一块缓冲重新写,而原有的缓冲区则进入全局缓冲区。

Concurrence Refinement Thread 扫描全局缓冲区的日志,根据日志更新各个区(Region)的RSet。这块逻辑跟后面讲到的SATB技术十分相似,但又不同SATB技术主要更新的是存活对象的位图。

Concurrence Refinement Thread(同步优化线程) 可通过

**-XX:G1ConcRefinementThreads (默认等于-XX:ParellelGCThreads)设置。**

如果发现全局缓冲区日志积累较多,G1会调用更多的线程来出来缓冲区日志,甚至会调用App Thread 来处理,造成应用任务堵塞,所以必须要尽量避免这样的现象出现。可以通过阈值

**-XX:G1ConcRefinementGreenZone**

**-XX:G1ConcRefinementYellowZone**

**-XX:G1ConcRefinementRedZone**

这三个参数来设置G1调用线程的数量来处理全局缓存的积累的日志。

G1垃圾收集器的三种模式

young GC

young GC的触发条件

Eden区的大小范围 = [ -XX:G1NewSizePercent, -XX:G1MaxNewSizePercent ] = [ 整堆5%, 整堆60% ]
在[ 整堆5%, 整堆60% ]的基础上,G1会计算下现在Eden区回收大概要多久时间,如果回收时间远远小于参数-XX:MaxGCPauseMills设定的值(默认200ms),那么增加年轻代的region,继续给新对象存放,不会马上做YoungGC。
G1计算回收时间接近参数-XX:MaxGCPauseMills设定的值,那么就会触发YoungGC。

#### **具体步骤:**

根扫描:

GC并行任务包括根扫描、更新RSet、对象复制,主要逻辑在g1CollectedHeap.cpp G1ParTask类的work方法中;evacuate_roots方法为根扫描。

```C++
void work(uint worker_id) {
    if (worker_id >= _n_workers) return;  // no work needed this round

    _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, os::elapsedTime());

    {
      ResourceMark rm;
      HandleMark   hm;

      ReferenceProcessor*             rp = _g1h->ref_processor_stw();

      G1ParScanThreadState            pss(_g1h, worker_id, rp);
      G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);

      pss.set_evac_failure_closure(&evac_failure_cl);

      bool only_young = _g1h->g1_policy()->gcs_are_young();

      // Non-IM young GC.
      G1ParCopyClosure<G1BarrierNone, G1MarkNone>             scan_only_root_cl(_g1h, &pss, rp);
      G1CLDClosure<G1MarkNone>                                scan_only_cld_cl(&scan_only_root_cl,
                                                                               only_young, // Only process dirty klasses.
                                                                               false);     // No need to claim CLDs.
      // IM young GC.
      //    Strong roots closures.
      G1ParCopyClosure<G1BarrierNone, G1MarkFromRoot>         scan_mark_root_cl(_g1h, &pss, rp);
      G1CLDClosure<G1MarkFromRoot>                            scan_mark_cld_cl(&scan_mark_root_cl,
                                                                               false, // Process all klasses.
                                                                               true); // Need to claim CLDs.
      //    Weak roots closures.
      G1ParCopyClosure<G1BarrierNone, G1MarkPromotedFromRoot> scan_mark_weak_root_cl(_g1h, &pss, rp);
      G1CLDClosure<G1MarkPromotedFromRoot>                    scan_mark_weak_cld_cl(&scan_mark_weak_root_cl,
                                                                                    false, // Process all klasses.
                                                                                    true); // Need to claim CLDs.

      OopClosure* strong_root_cl;
      OopClosure* weak_root_cl;
      CLDClosure* strong_cld_cl;
      CLDClosure* weak_cld_cl;

      bool trace_metadata = false;

      if (_g1h->g1_policy()->during_initial_mark_pause()) {
        // We also need to mark copied objects.
        strong_root_cl = &scan_mark_root_cl;
        strong_cld_cl  = &scan_mark_cld_cl;
        if (ClassUnloadingWithConcurrentMark) {
          weak_root_cl = &scan_mark_weak_root_cl;
          weak_cld_cl  = &scan_mark_weak_cld_cl;
          trace_metadata = true;
        } else {
          weak_root_cl = &scan_mark_root_cl;
          weak_cld_cl  = &scan_mark_cld_cl;
        }
      } else {
        strong_root_cl = &scan_only_root_cl;
        weak_root_cl   = &scan_only_root_cl;
        strong_cld_cl  = &scan_only_cld_cl;
        weak_cld_cl    = &scan_only_cld_cl;
      }

      pss.start_strong_roots();

      _root_processor->evacuate_roots(strong_root_cl,
                                      weak_root_cl,
                                      strong_cld_cl,
                                      weak_cld_cl,
                                      trace_metadata,
                                      worker_id);

      G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, &pss);
      _root_processor->scan_remembered_sets(&push_heap_rs_cl,
                                            weak_root_cl,
                                            worker_id);
      pss.end_strong_roots();

      {
        double start = os::elapsedTime();
        G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
        evac.do_void();
        double elapsed_sec = os::elapsedTime() - start;
        double term_sec = pss.term_time();
        _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
        _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
        _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, pss.term_attempts());
      }
      _g1h->g1_policy()->record_thread_age_table(pss.age_table());
      _g1h->update_surviving_young_words(pss.surviving_young_words()+1);

      if (ParallelGCVerbose) {
        MutexLocker x(stats_lock());
        pss.print_termination_stats(worker_id);
      }

      assert(pss.queue_is_empty(), "should be empty");

      // Close the inner scope so that the ResourceMark and HandleMark
      // destructors are executed here and are included as part of the
      // "GC Worker Time".
    }
    _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
  }
};
```

**g1RootProcessor.cpp的evacuate_roots主要逻辑如下**:

```java
void G1RootProcessor::evacuate_roots(OopClosure* scan_non_heap_roots,
                                     OopClosure* scan_non_heap_weak_roots,
                                     CLDClosure* scan_strong_clds,
                                     CLDClosure* scan_weak_clds,
                                     bool trace_metadata,
                                     uint worker_i) {
  // First scan the shared roots.
  double ext_roots_start = os::elapsedTime();
  G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times();

  BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
  BufferingOopClosure buf_scan_non_heap_weak_roots(scan_non_heap_weak_roots);

  OopClosure* const weak_roots = &buf_scan_non_heap_weak_roots;
  OopClosure* const strong_roots = &buf_scan_non_heap_roots;

  // CodeBlobClosures are not interoperable with BufferingOopClosures
  G1CodeBlobClosure root_code_blobs(scan_non_heap_roots);

  process_java_roots(strong_roots,
                     trace_metadata ? scan_strong_clds : NULL,
                     scan_strong_clds,
                     trace_metadata ? NULL : scan_weak_clds,
                     &root_code_blobs,
                     phase_times,
                     worker_i);

  // This is the point where this worker thread will not find more strong CLDs/nmethods.
  // Report this so G1 can synchronize the strong and weak CLDs/nmethods processing.
  if (trace_metadata) {
    worker_has_discovered_all_strong_classes();
  }

  process_vm_roots(strong_roots, weak_roots, phase_times, worker_i);
  process_string_table_roots(weak_roots, phase_times, worker_i);
  {
    // Now the CM ref_processor roots.
    G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::CMRefRoots, worker_i);
    if (!_process_strong_tasks.is_task_claimed(G1RP_PS_refProcessor_oops_do)) {
      // We need to treat the discovered reference lists of the
      // concurrent mark ref processor as roots and keep entries
      // (which are added by the marking threads) on them live
      // until they can be processed at the end of marking.
      _g1h->ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
    }
  }

  if (trace_metadata) {
    {
      G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::WaitForStrongCLD, worker_i);
      // Barrier to make sure all workers passed
      // the strong CLD and strong nmethods phases.
      wait_until_all_strong_classes_discovered();
    }

    // Now take the complement of the strong CLDs.
    G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::WeakCLDRoots, worker_i);
    ClassLoaderDataGraph::roots_cld_do(NULL, scan_weak_clds);
  } else {
    phase_times->record_time_secs(G1GCPhaseTimes::WaitForStrongCLD, worker_i, 0.0);
    phase_times->record_time_secs(G1GCPhaseTimes::WeakCLDRoots, worker_i, 0.0);
  }

  // Finish up any enqueued closure apps (attributed as object copy time).
  buf_scan_non_heap_roots.done();
  buf_scan_non_heap_weak_roots.done();

  double obj_copy_time_sec = buf_scan_non_heap_roots.closure_app_seconds()
      + buf_scan_non_heap_weak_roots.closure_app_seconds();

  phase_times->record_time_secs(G1GCPhaseTimes::ObjCopy, worker_i, obj_copy_time_sec);

  double ext_root_time_sec = os::elapsedTime() - ext_roots_start - obj_copy_time_sec;

  phase_times->record_time_secs(G1GCPhaseTimes::ExtRootScan, worker_i, ext_root_time_sec);

  // During conc marking we have to filter the per-thread SATB buffers
  // to make sure we remove any oops into the CSet (which will show up
  // as implicitly live).
  {
    G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::SATBFiltering, worker_i);
    if (!_process_strong_tasks.is_task_claimed(G1RP_PS_filter_satb_buffers) && _g1h->mark_in_progress()) {

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1904211.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

catia数控加工仿真铣平面粗加工

1&#xff0c;零件建模&#xff0c;毛坯建模 2 在毛坯上建立坐标系 3 添加资料刀具 4&#xff0c;双击对相关加工信息做设置 5 Roughing 加工设置 高亮红色区域是必选的&#xff0c;其他可以默认 6 完成加工仿真 7 加工余量

IntelliJ IDEA 同时多行同时编辑操作快捷键

首先 点击要编辑的地方,长按鼠标左键不放,同时按住 Ctrl Shift Alt,然后就可以进行多行编辑了

亲密数对C++函数

自定义函数 #include<bits/stdc.h> using namespace std; //求n的因子和自定义函数 int yinzihe(int n){//使用2~sqrt(n)成对求解因子和int r0,i;//变量 r 初始值为0&#xff0c;因为要存放因子和for(i2;i<sqrt(n);i) {//回顾sqrt()课程//如果 i 是 n 的因子&#xf…

用win的控制台去远程连接虚拟机linux的终端

以Ubuntu为例&#xff0c;首先确保Ubuntu已经安装了ssh服务 sudo apt-get install openssh-server输入密码 安装完毕后查看ssh状态是否开启 sudo systemctl status ssh 显示绿色激活状态&#xff0c;可以关闭或开启 对应start和stop winr打开win端控制台 输入 ssh -p 22 …

【Linux详解】进程等待 | 非阻塞轮询

引入&#xff1a; 为什么&#xff1f;是什么&#xff1f;怎么办 是什么&#xff1f; 进程等待是指父进程暂停自己的执行&#xff0c;直到某个特定的子进程结束或发生某些特定的事件。 为什么&#xff1f; 僵尸进程刀枪不入&#xff0c;不可被杀死&#xff0c;存在内存泄露…

Codeforces Round 918 (Div. 4)(A~F)

目录 A. Odd One Out B. Not Quite Latin Square C. Can I Square? D. Unnatural Language Processing E. Romantic Glasses F. Greetings A. Odd One Out Problem - A - Codeforces 输出一个不同于其他两个数的数&#xff0c;用异或操作可以轻松解决。 void solve{int…

ompl.app的demo_OpenDEPlanning例子

编译了下OMPL和OMPL.app, 其中有个example 是用刚体动力学库ODE搭建的小车运动场景&#xff0c;找出小车到目标的路径&#xff0c;牵引小车跑到目标位置。 ompl小车路径运动模拟

https 自签证书相关生成csr文件、p12文件、crt文件、jks文件、key文件、pem文件

文章目录 前言https 自签证书相关生成csr文件、p12文件、crt文件、jks文件、key文件、pem文件1, 检查openssl的版本2. 生成私钥和证书签署请求 (CSR)3. 生成自签名证书4. 将证书和私钥转换为 PKCS12 格式的密钥库5. 创建信任库 (Truststore)6. 将 PKCS12 文件转换为 JKS 文件7.…

详解Python递归解决汉诺塔问题

Python递归解决汉诺塔问题 递归解决汉诺塔问题是经典的计算机科学问题&#xff0c;它涉及到如何将一堆盘子从一个柱子上移动到另一个柱子上&#xff0c;每次只能移动一个盘子&#xff0c;并且大盘子不能放在小盘子上面。 例如我们需要将a柱盘子全部移动到b柱&#xff0c;接下来…

程序员熬夜看欧洲杯被“冻住”,呼吸困难……

2024欧洲杯接近尾声&#xff0c;更是激发球迷兴趣。由于时差关系&#xff0c;很多球迷熬夜看球&#xff0c;啤酒、宵夜成了标配。然而&#xff0c;在这份欢乐背后&#xff0c;也隐藏着健康风险。 日前&#xff0c;浙江杭州29岁的程序员单先生熬夜与朋友看完球赛后开车回家&…

室内定位可视化:精准导航与实时位置展示

通过图扑室内定位可视化技术&#xff0c;提供精准的导航服务和实时位置展示&#xff0c;帮助用户高效找到目标地点&#xff0c;提升空间管理和资源配置的效率与体验。

Spring学习05-[AOP学习-AOP原理和事务]

AOP原理和事务 AOPAOP底层原理比如下面的代码案例手动模拟AOP 动态代理详解JDK动态代理 AOP AOP底层原理 当实现了AOP,Spring会根据当前的bean创建动态代理(运行时生成一个代理类) 面试题&#xff1a;为什么执行方法的时候&#xff0c;会执行切面里的通知方法&#xff1f; 比…

51单片机嵌入式开发:1、STC89C52环境配置到点亮LED

STC89C52环境配置到点亮LED 1 环境配置1.1 硬件环境1.2 编译环境1.3 烧录环境 2 工程配置2.1 工程框架2.2 工程创建2.3 参数配置 3 点亮一个LED3.1 原理图解读3.2 代码配置3.3 演示 4 总结 1 环境配置 1.1 硬件环境 硬件环境采用“华晴电子”的MINIEL-89C开发板&#xff0c;这…

YOLOv8 | 代码逐行解析(五) | YOLOv8中损失函数计算的详解包含Cls和Bbox计算的解析,小白必看(下)

一、本文介绍 本文给大家带来的是YOLOv8中的损失函数计算的完整解析&#xff0c;内容包括v8DetectionLoss的解析&#xff0c;以及BboxLoss的解析&#xff0c;如果你相对损失函数的计算原理&#xff0c;本文内容绝对会对你有所帮助&#xff0c;全文内容包含1万两千字&#xff0…

【鸿蒙学习笔记】MVVM模式

官方文档&#xff1a;MVVM模式 [Q&A] 什么是MVVM ArkUI采取MVVM Model View ViewModel模式。 Model层&#xff1a;存储数据和相关逻辑的模型。View层&#xff1a;在ArkUI中通常是Component装饰组件渲染的UI。ViewModel层&#xff1a;在ArkUI中&#xff0c;ViewModel是…

四大常见的排序算法JAVA

1. 冒泡排序 相邻的元素两两比较&#xff0c;大的放右边&#xff0c;小的放左边 第一轮比较完毕之后&#xff0c;最大值就已经确定&#xff0c;第二轮可以少循环一次&#xff0c;后面以此类推 如果数组中有n个数据&#xff0c;总共我们只要执行n-1轮的代码就可以 package Bu…

转盘输入法-键盘加鼠标版本

序 转盘输入法&#xff0c;给你的聊天加点新意。它不用常见的九宫格或全键盘&#xff0c;而是把字母摆在圆盘上&#xff0c;一滑一滑&#xff0c;字就出来了&#xff0c;新鲜又直接。 键盘加鼠标版本GIF演示 演示软件下载 转盘输入法PC演示版本EXE下载https://download.csdn…

一招解决找不到d3dcompiler43.dll,无法继续执行代码问题

当您的电脑遇到d3dcompiler43.dll缺失问题时&#xff0c;首先需要了解d3dcompiler43.dll文件及其可能导致问题的原因&#xff0c;之后便可以选择合适的解决方案。在此&#xff0c;我们将会为您提供寻找d3dcompiler43.dll文件的多种处理方法。 一、d3dcompiler43.dll文件分析 d…

virtualbox安装unbuntu22.04

准备 virtualbox https://www.virtualbox.org/ ubuntu ios https://ubuntu.com/ 安装 等待安装结束即可&#xff0c;输入账号密码登录系统 远程连接发现失败&#xff0c;不过ping 外网可以访问 关闭虚拟机&#xff0c;选择工具&#xff0c;网络查看ip 选择虚拟机&#…

【初中数学选讲】绝对值的几何意义例题(20240503-01)

初中数学选讲&#xff1a;绝对值的几何意义例题&#xff08;20240503-01&#xff09; 1. 练习题目1.1 题目描述1.2 分析 2 答题2.1 定义2.2 分段讨论2.2.1 情况1&#xff1a; x x x点在 a a a点左侧&#xff08; x < a , m ∣ x − a ∣ x<a,\ \ m\left|x-a\right| x<…