三角分解法
A的杜利特分解公式如下:
u
1
j
=
a
1
j
(
j
=
1
,
2
,
⋯
,
n
)
,
l
i
1
=
a
i
1
/
u
11
(
i
=
2
,
3
,
⋯
,
n
)
,
u
k
j
=
a
k
j
−
∑
m
=
1
k
−
1
l
b
m
u
m
j
⇒
a
k
j
(
j
=
k
,
k
+
1
,
⋯
,
n
)
,
l
i
k
=
(
a
i
k
−
∑
m
=
1
k
−
1
l
i
n
u
m
k
)
/
u
k
k
⇒
a
k
k
(
i
=
k
+
1
,
k
+
2
,
⋯
,
n
)
(
k
=
2
,
3
,
⋯
,
n
)
.
\begin{aligned}&u_{1j}=a_{1j}\quad(j=1,2,\cdots,n),\\&l_{i1}=a_{i1}/u_{11}\quad(i=2,3,\cdots,n) ,\\&u_{kj}=a_{kj}-\sum_{m=1}^{k-1}l_{bm}u_{mj}\Rightarrow a_{kj}\quad(j=k,k+1,\cdots,n) ,\\&l_{ik}=\left(a_{ik}-\sum_{m=1}^{k-1}l_{in}u_{mk}\right)\Big/u_{kk}\Rightarrow a_{kk}\quad(i=k+1,k+2,\cdots,n)\\&(k=2,3,\cdots,n).\end{aligned}
u1j=a1j(j=1,2,⋯,n),li1=ai1/u11(i=2,3,⋯,n),ukj=akj−m=1∑k−1lbmumj⇒akj(j=k,k+1,⋯,n),lik=(aik−m=1∑k−1linumk)/ukk⇒akk(i=k+1,k+2,⋯,n)(k=2,3,⋯,n).
楚列斯基分解
对于n阶(n>1)对称正定矩阵,楚列斯基分解
A
=
L
∗
L
T
A=L*L^T
A=L∗LT,是唯一的,即
(
a
11
a
12
⋯
a
1
n
a
21
a
22
⋯
a
2
n
⋮
⋮
⋮
a
n
1
a
n
2
⋯
a
m
)
=
(
l
11
l
21
l
22
⋮
⋮
⋱
l
n
1
l
n
2
⋯
l
m
)
(
l
11
l
21
⋯
l
n
1
l
22
⋯
l
n
2
⋱
⋮
l
m
)
,
\begin{pmatrix}a_{11}&a_{12}&\cdots&a_{1n}\\a_{21}&a_{22}&\cdots&a_{2n}\\\vdots&\vdots&&\vdots\\a_{n1}&a_{n2}&\cdots&a_{m}\end{pmatrix}=\begin{pmatrix}l_{11}\\l_{21}&l_{22}\\\vdots&\vdots&\ddots\\l_{n1}&l_{n2}&\cdots&l_{m}\end{pmatrix}\begin{pmatrix}l_{11}&l_{21}&\cdots&l_{n1}\\&l_{22}&\cdots&l_{n2}\\&&\ddots&\vdots\\&&&l_{m}\end{pmatrix},
a11a21⋮an1a12a22⋮an2⋯⋯⋯a1na2n⋮am
=
l11l21⋮ln1l22⋮ln2⋱⋯lm
l11l21l22⋯⋯⋱ln1ln2⋮lm
,
且
{
l
k
k
=
a
k
k
−
∑
m
=
1
k
−
1
l
k
m
2
,
l
i
k
=
(
a
i
k
−
∑
m
=
1
k
−
1
l
i
m
l
k
m
)
/
l
k
k
(
i
=
k
+
1
,
k
+
2
,
⋯
,
n
)
\begin{aligned}&\begin{cases}l_{kk}&=\sqrt{a_{kk}-\sum_{m=1}^{k-1}l_{km}^2} ,\\l_{ik}&=\left(a_{ik}-\sum_{m=1}^{k-1}l_{im}l_{km}\right)/l_{kk}&(i=k+1,k+2,\cdots,n)\end{cases}\end{aligned}
⎩
⎨
⎧lkklik=akk−∑m=1k−1lkm2,=(aik−∑m=1k−1limlkm)/lkk(i=k+1,k+2,⋯,n)
向量范数
∥
x
∥
1
=
∑
i
=
1
n
∣
x
i
∣
,
∥
x
∥
2
=
∑
i
=
1
n
x
i
2
,
∥
x
∥
∞
=
max
1
⩽
i
⩽
n
∣
x
i
∣
,
\begin{gathered} \parallel x\parallel_1=\sum_{i=1}^n\mid x_i\mid, \\ \parallel x\parallel_2=\sqrt{\sum_{i=1}^nx_i^2} , \\ \parallel x\parallel_\infty=\max_{1\leqslant i\leqslant n}\mid x_i\mid, \end{gathered}
∥x∥1=i=1∑n∣xi∣,∥x∥2=i=1∑nxi2,∥x∥∞=1⩽i⩽nmax∣xi∣,
矩阵范数
∥
A
∥
1
=
max
1
⩽
j
⩽
n
∑
i
=
1
n
∣
a
i
j
∣
,
列范数
∥
A
∥
∞
=
max
1
⩽
i
⩽
n
∑
j
=
1
n
∣
a
i
j
∣
,
行函数
∥
A
∥
2
=
λ
max
(
A
T
A
)
,
谱范数
∥
A
∥
F
=
∑
i
=
1
n
∑
j
=
1
n
a
i
j
2
.
F
−
范数
\begin{gathered} \parallel A\parallel_{1}=\max_{1\leqslant j\leqslant n}\sum_{i=1}^{n}\mid a_{ij}\mid, 列范数\\ \parallel A\parallel_{\infty}=\max_{1\leqslant i\leqslant n}\sum_{j=1}^{n}\mid a_{ij}\mid , 行函数\\ \parallel A\parallel_{2}=\sqrt{\lambda_{\max}(A^{\mathrm{T}}A)} , 谱范数\\ \parallel A\parallel_F=\sqrt{\sum_{i=1}^n\sum_{j=1}^na_{ij}^2}. F-范数 \end{gathered}
∥A∥1=1⩽j⩽nmaxi=1∑n∣aij∣,列范数∥A∥∞=1⩽i⩽nmaxj=1∑n∣aij∣,行函数∥A∥2=λmax(ATA),谱范数∥A∥F=i=1∑nj=1∑naij2.F−范数
矩阵A的条件数
C
o
n
d
(
A
)
=
∥
A
−
1
∥
∥
A
∥
\mathrm{Cond}(A)=\parallel A^{-1}\parallel\parallel A\parallel
Cond(A)=∥A−1∥∥A∥
简单迭代法
设有n阶线性方程组
A
x
=
b
Ax=b
Ax=b,
A
A
A为n阶非奇异矩阵,
A
x
=
b
Ax=b
Ax=b等价变形为
x
=
B
x
+
g
x=Bx+g
x=Bx+g,给定初始向量
x
(
0
)
x^{(0)}
x(0)可得到
x
(
k
+
1
)
=
B
x
(
k
)
+
g
(
k
=
0
,
1
,
⋯
)
x^{(k+1)}=Bx^{(k)}+g\quad(k=0,1,\cdots)
x(k+1)=Bx(k)+g(k=0,1,⋯)
若向量序列收敛,其收敛的向量为原方程组的解。其收敛的充要条件是谱半径
ρ
(
B
)
<
1
\rho(B) < 1
ρ(B)<1.
如果在计算第 i i i个分量 x i ( k + 1 ) x_i^{(k+1)} xi(k+1),前面的 i − 1 i-1 i−1个分量用最新的 x 1 ( k + 1 ) x_1^{(k+1)} x1(k+1), x 2 ( k + 1 ) x_2^{(k+1)} x2(k+1)…, x i − 1 ( k + 1 ) x_{i-1}^{(k+1)} xi−1(k+1)
而不是 x 1 ( k ) x_1^{(k)} x1(k), x 2 ( k ) x_2^{(k)} x2(k),…, x i − 1 ( k ) x_{i-1}^{(k)} xi−1(k),则是简单迭代法对应的高斯-赛德尔迭代法。
当简单迭代法的迭代矩阵 B B B满足 ∥ B ∥ 1 < 1 \parallel B\parallel_{1} < 1 ∥B∥1<1或 ∥ B ∥ ∞ < 1 \parallel B\parallel_{\infty} < 1 ∥B∥∞<1,对应的对应的高斯-赛德尔迭代法关于任意初始向量收敛。
雅可比迭代法
设有n阶线性方程组 A x = b Ax=b Ax=b, A A A为n阶非奇异矩阵,且对角元 a i i ≠ 0 ( i = 1 , 2 , 3 , . . . , n ) a_{ii} \neq 0 (i=1,2,3,...,n) aii=0(i=1,2,3,...,n)
将A如下分解,A=L+D+U,即
A
=
(
0
a
21
0
⋮
⋮
⋱
a
n
1
a
n
2
⋯
0
)
+
(
a
11
a
22
⋱
a
n
n
)
+
(
0
a
12
⋯
a
1
n
0
⋯
a
2
n
⋱
⋮
0
)
,
A=\begin{pmatrix}0\\a_{21}&0\\\vdots&\vdots&\ddots\\a_{n1}&a_{n2}&\cdots&0\end{pmatrix}+\begin{pmatrix}a_{11}\\&a_{22}\\&&\ddots\\&&&a_{nn}\end{pmatrix}+\begin{pmatrix}0&a_{12}&\cdots&a_{1n}\\&0&\cdots&a_{2n}\\&&\ddots&\vdots\\&&&0\end{pmatrix},
A=
0a21⋮an10⋮an2⋱⋯0
+
a11a22⋱ann
+
0a120⋯⋯⋱a1na2n⋮0
,
A
x
=
b
Ax=b
Ax=b等价于
(
L
+
D
+
U
)
x
=
b
(L+D+U)x=b
(L+D+U)x=b,
整理得,
x
=
−
D
−
1
(
L
+
U
)
x
+
D
−
1
b
x=-D^{-1}\left(L+U\right)x+D^{-1}b
x=−D−1(L+U)x+D−1b
记
B
J
=
−
D
−
1
(
L
+
U
)
,
g
=
D
−
1
b
B_J=-D^{-1}\left(L+U\right),g=D^{-1}b
BJ=−D−1(L+U),g=D−1b,则构造公式
x
(
k
+
1
)
=
B
J
x
(
k
)
+
g
(
k
=
0
,
1
,
⋅
⋅
⋅
)
x^{(k+1)}=B_Jx^{(k)}+g\quad(k=0,1,\cdotp\cdotp\cdotp)
x(k+1)=BJx(k)+g(k=0,1,⋅⋅⋅)
为雅可比迭代法,称
B
J
=
−
D
−
1
(
L
+
U
)
=
(
0
−
a
12
a
11
⋯
−
a
1
n
a
11
−
a
21
a
22
0
⋯
−
a
2
n
a
22
⋮
⋮
⋱
⋮
−
a
n
1
a
n
n
−
a
n
2
a
n
n
⋯
0
)
B_J=-D^{-1}(L+U)=\begin{pmatrix}0&-\frac{a_{12}}{a_{11}}&\cdots&-\frac{a_{1n}}{a_{11}}\\\\-\frac{a_{21}}{a_{22}}&0&\cdots&-\frac{a_{2n}}{a_{22}}\\\vdots&\vdots&\ddots&\vdots\\\\-\frac{a_{n1}}{a_{nn}}&-\frac{a_{n2}}{a_{nn}}&\cdots&0\end{pmatrix}
BJ=−D−1(L+U)=
0−a22a21⋮−annan1−a11a120⋮−annan2⋯⋯⋱⋯−a11a1n−a22a2n⋮0
为雅可比矩阵。
雅可比迭代法关于任意初始向量 x ( 0 ) x^{(0)} x(0)收敛的充要条件是 ρ ( B j ) < 1 \rho(B_{j}) < 1 ρ(Bj)<1.
其对应的高斯-赛德尔迭代法为
x
(
k
+
1
)
=
−
(
D
+
L
)
−
1
U
x
(
k
)
+
(
D
+
L
)
−
1
b
x^{(k+1)}=- (D+L)^{-1}Ux^{(k)}+(D+L)^{-1}b
x(k+1)=−(D+L)−1Ux(k)+(D+L)−1b
若系数矩阵A严格对角占优,高斯-赛德尔迭代法对于任意初始向量
x
(
0
)
x^{(0)}
x(0)收敛。
若系数矩阵A对称正定,高斯-赛德尔迭代法对于任意初始向量 x ( 0 ) x^{(0)} x(0)收敛。