第T4周:使用TensorFlow实现猴痘病识别

news2024/11/26 21:44:58
  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊

    文章目录

    • 一、前期工作
      • 1.设置GPU(如果使用的是CPU可以忽略这步)
      • 2. 导入数据
      • 3. 查看数据
    • 二、数据预处理
      • 1、加载数据
      • 2、数据可视化
      • 3、再次检查数据
      • 4、配置数据集
    • 三、构建CNN网络
    • 四、编译
    • 五、训练模型
    • 六、模型评估
      • 1. Loss与Accuracy图
      • 2.指定图片进行预测
    • 七、优化
      • 1、使用`model.evaluate`使用测试集评估模型
      • 2、网络结构优化
      • 3、 Loss与Accuracy图
      • 4、使用`model.evaluate`评估优化后的模型
    • 八、总结

电脑环境:
语言环境:Python 3.8.0
编译器:Jupyter Notebook
深度学习环境:tensorflow 2.15.0

一、前期工作

1.设置GPU(如果使用的是CPU可以忽略这步)

from tensorflow import keras
from keras import layers, models
import os, PIL, pathlib
import matplotlib.pyplot as plt
import tensorflow as tf

gpus = tf.config.list_physical_devices("GPU")

if gpus:
    gpu0 = gpus[0] #如果有多个GPU,仅使用第0个GPU
    tf.config.experimental.set_memory_growth(gpu0, True) #设置GPU显存用量按需使用
    tf.config.set_visible_devices([gpu0],"GPU")

2. 导入数据

data_dir = "./data/"
data_dir = pathlib.Path(data_dir)

3. 查看数据

image_count = len(list(data_dir.glob('*/*.jpg')))
print("图片总数为:",image_count)

输出:图片总数为: 2142

打开一张图片:

Monkeypox = list(data_dir.glob('Monkeypox/*.jpg'))
PIL.Image.open(str(Monkeypox[1]))

在这里插入图片描述

二、数据预处理

1、加载数据

使用image_dataset_from_directory方法将磁盘中的数据加载到tf.data.Dataset中。

测试集与验证集的关系:

  1. 验证集并没有参与训练过程梯度下降过程的,狭义上来讲是没有参与模型的参数训练更新的。
  2. 但是广义上来讲,验证集存在的意义确实参与了一个“人工调参”的过程,我们根据每一个epoch训练之后模型在valid data上的表现来决定是否需要训练进行early stop,或者根据这个过程模型的性能变化来调整模型的超参数,如学习率,batch_size等等。
  3. 因此,我们也可以认为,验证集也参与了训练,但是并没有使得模型去overfit验证集。
batch_size = 32
img_height = 224
img_width = 224

"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="training",
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size)

val_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="validation",
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size)

我们可以通过class_names输出数据集的标签。标签将按字母顺序对应于目录名称。

class_names = train_ds.class_names
print(class_names)

输出:

[‘Monkeypox’, ‘Others’]

2、数据可视化

plt.figure(figsize=(20, 10))

for images, labels in train_ds.take(1):
    for i in range(20):
        ax = plt.subplot(5, 10, i + 1)

        plt.imshow(images[i].numpy().astype("uint8"))
        plt.title(class_names[labels[i]])
        
        plt.axis("off")

3、再次检查数据

for image_batch, labels_batch in train_ds:
    print(image_batch.shape)
    print(labels_batch.shape)
    break

输出:

(32, 224, 224, 3)
(32,)

4、配置数据集

AUTOTUNE = tf.data.AUTOTUNE
train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)

三、构建CNN网络

num_classes = 2

"""
关于卷积核的计算不懂的可以参考文章:https://blog.csdn.net/qq_38251616/article/details/114278995

layers.Dropout(0.4) 作用是防止过拟合,提高模型的泛化能力。
在上一篇文章花朵识别中,训练准确率与验证准确率相差巨大就是由于模型过拟合导致的

关于Dropout层的更多介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/115826689
"""

model = models.Sequential([
    layers.experimental.preprocessing.Rescaling(1./255, input_shape=(img_height, img_width, 3)), # 归一化
    
    layers.Conv2D(16, (3, 3), activation='relu', input_shape=(img_height, img_width, 3)), # 卷积层1,卷积核3*3  
    layers.AveragePooling2D((2, 2)),               # 池化层1,2*2采样
    layers.Conv2D(32, (3, 3), activation='relu'),  # 卷积层2,卷积核3*3
    layers.AveragePooling2D((2, 2)),               # 池化层2,2*2采样
    layers.Dropout(0.3),  
    layers.Conv2D(64, (3, 3), activation='relu'),  # 卷积层3,卷积核3*3
    layers.Dropout(0.3),  
    
    layers.Flatten(),                       # Flatten层,连接卷积层与全连接层
    layers.Dense(128, activation='relu'),   # 全连接层,特征进一步提取
    layers.Dense(num_classes)               # 输出层,输出预期结果
])

model.summary()  # 打印网络结构

四、编译

# 设置优化器
opt = tf.keras.optimizers.Adam(learning_rate=1e-4)
model.compile(optimizer=opt,
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

五、训练模型

关于ModelCheckpoint的详细介绍可参考文章ModelCheckpoint 讲解【TensorFlow2入门手册】

from tensorflow.keras.callbacks import ModelCheckpoint

epochs = 50

checkpointer = ModelCheckpoint('best_model.h5',  # 保存最好模型的路径
                                monitor='val_accuracy',  # 需要监视的指标
                                verbose=1,  # 信息展示模式,0/1
                                save_best_only=True,  # 当设置为True时,监测指标有改进时才会保存当前的模型
                                save_weights_only=True)  # 当设置为True时,则只保存模型权重,否则将保存整个模型(模型结构,配置信息等)

history = model.fit(train_ds,
                    validation_data=val_ds,
                    epochs=epochs,
                    callbacks=[checkpointer])

输出:

Epoch 1/50
53/54 [============================>.] - ETA: 0s - loss: 0.7034 - accuracy: 0.5612
Epoch 1: val_accuracy improved from -inf to 0.58879, saving model to /content/drive/MyDrive/app/T4/best_model.h5
54/54 [==============================] - 280s 976ms/step - loss: 0.7029 - accuracy: 0.5607 - val_loss: 0.6588 - val_accuracy: 0.5888
.................................
Epoch 47/50
53/54 [============================>.] - ETA: 0s - loss: 0.0545 - accuracy: 0.9875
Epoch 47: val_accuracy did not improve from 0.88318
54/54 [==============================] - 2s 45ms/step - loss: 0.0549 - accuracy: 0.9872 - val_loss: 0.4760 - val_accuracy: 0.8762
Epoch 48/50
53/54 [============================>.] - ETA: 0s - loss: 0.0525 - accuracy: 0.9857
Epoch 48: val_accuracy did not improve from 0.88318
54/54 [==============================] - 3s 48ms/step - loss: 0.0526 - accuracy: 0.9860 - val_loss: 0.4829 - val_accuracy: 0.8808
Epoch 49/50
54/54 [==============================] - ETA: 0s - loss: 0.0606 - accuracy: 0.9802
Epoch 49: val_accuracy improved from 0.88318 to 0.88551, saving model to /content/drive/MyDrive/app/T4/best_model.h5
54/54 [==============================] - 4s 76ms/step - loss: 0.0606 - accuracy: 0.9802 - val_loss: 0.5093 - val_accuracy: 0.8855
Epoch 50/50
53/54 [============================>.] - ETA: 0s - loss: 0.0614 - accuracy: 0.9786
Epoch 50: val_accuracy did not improve from 0.88551
54/54 [==============================] - 3s 51ms/step - loss: 0.0615 - accuracy: 0.9784 - val_loss: 0.4773 - val_accuracy: 0.8762

六、模型评估

1. Loss与Accuracy图

acc = history.history['accuracy']
val_acc = history.history['val_accuracy']

loss = history.history['loss']
val_loss = history.history['val_loss']

epochs_range = range(epochs)

plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述

2.指定图片进行预测

# 加载效果最好的模型权重
model.load_weights('best_model.h5')
from PIL import Image
import numpy as np

# img = Image.open("./45-data/Monkeypox/M06_01_04.jpg")  #这里选择你需要预测的图片
img = Image.open("./45-data/Others/NM01_01_00.jpg")  #这里选择你需要预测的图片
image = tf.image.resize(img, [img_height, img_width])

img_array = tf.expand_dims(image, 0) 

predictions = model.predict(img_array) # 这里选用你已经训练好的模型
print("预测结果为:",class_names[np.argmax(predictions)])

输出:

1/1 [==============================] - 0s 19ms/step
预测结果为: Others

预测正确。

七、优化

1、使用model.evaluate使用测试集评估模型

test_loss, test_acc = model.evaluate(val_ds, verbose=1)  # verbose=0不显示进度条,1显示进度条
print('Test loss:', test_loss)
print('Test accuracy:', test_acc)

输出:

14/14 [==============================] - 0s 16ms/step - loss: 0.5093 - accuracy: 0.8855
Test loss: 0.5093046426773071
Test accuracy: 0.8855140209197998

在上边Loss与Accuracy图中可以看出,模型存在过拟合的问题,出现过拟合的问题解决办法有减小网络的大小、添加正则化项、添加dropout层等。

2、网络结构优化

经过多次训练和优化,最终效果最好的网络结构如下:包括5个卷积层,5个池化层,1个dropout层。

num_classes = 2

model = models.Sequential([
    layers.experimental.preprocessing.Rescaling(1./255, input_shape=(img_height, img_width, 3)),

    layers.Conv2D(16, (3, 3), activation='relu', input_shape=(img_height, img_width, 3)),  # 卷积层1
    layers.AveragePooling2D((2, 2)),  # 池化层1
    layers.Conv2D(32, (3, 3), activation='relu'),  # 卷积层2
    layers.AveragePooling2D((2, 2)),  # 池化层2
    layers.Conv2D(32, (3, 3), activation='relu'),  # 卷积层3
    layers.AveragePooling2D((2, 2)),  # 池化层3
    layers.Conv2D(32, (3, 3), activation='relu'),  # 卷积层4
    layers.AveragePooling2D((2, 2)),  # 池化层4
    layers.Conv2D(64, (3, 3), activation='relu'),  # 卷积层5
    layers.AveragePooling2D((2, 2)),  # 池化层5
    layers.Dropout(0.4),

    layers.Flatten(),
    layers.Dense(128, activation='relu'),
    layers.Dense(num_classes)
])

训练输出结果:

Epoch 1/50
54/54 [==============================] - ETA: 0s - loss: 0.6823 - accuracy: 0.5443
Epoch 1: val_accuracy improved from -inf to 0.56308, saving model to /content/drive/MyDrive/app/T4/best_model2.h5
54/54 [==============================] - 5s 52ms/step - loss: 0.6823 - accuracy: 0.5443 - val_loss: 0.6771 - val_accuracy: 0.5631
。。。。。。。。。。。。。。。。。。。。。。。。。。。。
Epoch 47/50
53/54 [============================>.] - ETA: 0s - loss: 0.3012 - accuracy: 0.8757
Epoch 47: val_accuracy improved from 0.85981 to 0.87383, saving model to /content/drive/MyDrive/app/T4/best_model2.h5
54/54 [==============================] - 3s 52ms/step - loss: 0.3042 - accuracy: 0.8734 - val_loss: 0.3395 - val_accuracy: 0.8738
Epoch 48/50
53/54 [============================>.] - ETA: 0s - loss: 0.3027 - accuracy: 0.8829
Epoch 48: val_accuracy did not improve from 0.87383
54/54 [==============================] - 2s 38ms/step - loss: 0.3056 - accuracy: 0.8810 - val_loss: 0.3355 - val_accuracy: 0.8738
Epoch 49/50
53/54 [============================>.] - ETA: 0s - loss: 0.3036 - accuracy: 0.8805
Epoch 49: val_accuracy did not improve from 0.87383
54/54 [==============================] - 2s 38ms/step - loss: 0.3021 - accuracy: 0.8816 - val_loss: 0.3387 - val_accuracy: 0.8621
Epoch 50/50
53/54 [============================>.] - ETA: 0s - loss: 0.2950 - accuracy: 0.8912
Epoch 50: val_accuracy improved from 0.87383 to 0.89019, saving model to /content/drive/MyDrive/app/T4/best_model2.h5
54/54 [==============================] - 2s 39ms/step - loss: 0.2945 - accuracy: 0.8909 - val_loss: 0.3172 - val_accuracy: 0.8902

3、 Loss与Accuracy图

在这里插入图片描述
从图中可以看出模型过拟合的影响大大减小,我没有在网络中增加正则化项,模型还有提升的空间。

4、使用model.evaluate评估优化后的模型

test_loss, test_acc = model.evaluate(val_ds, verbose=1)  # verbose=0不显示进度条,1显示进度条
print('Test loss:', test_loss)
print('Test accuracy:', test_acc)

输出:

14/14 [==============================] - 0s 13ms/step - loss: 0.3172 - accuracy: 0.8902
Test loss: 0.31724825501441956
Test accuracy: 0.8901869058609009

测试集的loss大大减小,且acc提高了。

八、总结

对于神经网络学习图片特征过程中,过拟合现象很容易发生,耐心调参即可对模型进行优化。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1903592.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

人脸识别课堂签到系统【PyQt5实现】

人脸识别签到系统 1、运用场景 课堂签到,上班打卡,进出门身份验证。 2、功能类别 人脸录入,打卡签到,声音提醒,打卡信息导出,打包成exe可执行文件 3、技术栈 python3.8,sqlite3,opencv,face_recognition,PyQt5,csv 4、流程图 1、导入库 2、编写UI界面 3、打…

Linux服务器使用总结-不定时更新

# 查看升级日志 cat /var/log/dpkg.log |grep nvidia|grep libnvidia-common

C++ 多态篇

文章目录 1. 多态的概念和实现1.1 概念1.2 实现1.2.1 协变1.2.2 析构函数1.2.3 子类虚函数不加virtual 2. C11 final和override3.1 final3.2 override 3. 函数重载、重写与隐藏4. 多态的原理5. 抽象类6.单继承和多继承的虚表6.1 单继承6.2 多继承 7. 菱形继承的虚表(了解)7.1 菱…

为企业知识库选模型?全球AI大模型知识库RAG场景基准测试排名

大语言模型常见基准测试 大家对于AI模型理解和推理能力的的基准测试一定非常熟悉了,比如MMLU(大规模多任务语言理解)、GPQA(研究生级别知识问答)、GSMSK(研究生数学知识考察)、MATH&#xff08…

NextJs - SSR渲染解决antd首屏加载CSS样式的闪烁问题

NextJs - SSR渲染解决antd首屏加载CSS样式的闪烁问题 闪烁现状解决方案 闪烁现状 我们写一个非常简单的页面&#xff1a; import { Button } from antdexport default async function Page() {return <><Button typeprimary>AAA</Button></> }NextJs…

Linux防火墙使用(firewalld与iptables)

防火墙概述 防火墙是一种由硬件和软件组合而成&#xff0c;在内部网和外部网之间、专有网和公共网之间构造的保护屏障&#xff0c;用以保护用户资料和信息安全的一种技术 防火墙作用在于及时发现并处理计算机网络运行时可能存在的安全风险、数据传输等问题&#xff0c;从而实现…

SSRF靶场通关合集

目录 前言 SSRF总结 1.pikachu 1.1SSRF(curl) 1.1.1http协议 1.1.2 file协议查看本地文件 1.1.3 dict协议扫描内网主机开放端口 1.2 SSRF&#xff08;file_get_content&#xff09; 1.2.1 file读取本地文件 1.2.2 php://filter/读php源代码 2.DoraBox靶场 前言 最近…

[终端安全]-3 移动终端之硬件安全(TEE)

&#xff08;参考资料&#xff1a;TrustZone for V8-A. pdf&#xff0c;来源ARM DEVELOPER官网&#xff09; TEE&#xff08;Trusted Execution Environment&#xff0c;可信执行环境&#xff09;是用于执行敏感代码和处理敏感数据的独立安全区域&#xff1b;以ARM TrustZone为…

一.2.(3)放大电路的图解分析方法和微变等效电路分析方法;

放大电路的主要分析方法:图解法、微变等效电路法 这里以共射放大电路为例 (1) 图解法: 1.静态分析 首先确定静态工作点Q,然后根据电路的特点,做出直流负载线,进而画出交流负载线,最后,画出各极电流电压的波形。求出最大不失真输出电压。 估算IBQ&#xff0c;然后根据数据手册里…

『大模型笔记』《Pytorch实用教程》(第二版)

『大模型笔记』《Pytorch实用教程》(第二版) 文章目录 一. 《Pytorch实用教程》(第二版)1.1 上篇1.2 中篇1.3 下篇1.4 本书亮点1.5 本书内容及结构二. 参考文献🖥️ 配套代码(开源免费):https://github.com/TingsongYu/PyTorch-Tutorial-2nd📚 在线阅读(开源免费)…

WebAssembly场景及未来

引言 从前面的文章中&#xff0c;我们已经了解了 WebAssembly&#xff08;WASM&#xff09; 的基本知识&#xff0c;演进历程&#xff0c;以及简单的使用方法。通过全面了解了WebAssembly的设计初衷和优势&#xff0c;我们接下来要知道在什么样的场景中我们会使用 WASM 呢&…

多表查询sql

概述&#xff1a;项目开发中,在进行数据库表结构设计时,会根据业务需求及业务模块之间的关系,分析并设计表结构,由于业务之间相互关联,所以各个表结构之间也存在着各种联系&#xff0c;分为三种&#xff1a; 一对多多对多一对一 一、多表关系 一对多 案例&#xff1a;部门与…

昇思25天学习打卡营第17天 | K近邻算法实现红酒聚类

内容介绍&#xff1a; K近邻算法&#xff08;K-Nearest-Neighbor, KNN&#xff09;是一种用于分类和回归的非参数统计方法&#xff0c;是机器学习最基础的算法之一。它正是基于以上思想&#xff1a;要确定一个样本的类别&#xff0c;可以计算它与所有训练样本的距离&#xff0…

nacos-sdk-python——Python版本Nacos客户端

Nacos&#xff08;Naming and Configuration Service&#xff09;是阿里巴巴开源的一款动态服务发现、配置管理和服务管理平台。它主要用于解决微服务架构中服务发现和配置管理的问题&#xff0c;提供了一站式解决方案。以下是 Nacos 的几个关键功能&#xff1a; 服务发现和健康…

Ubuntu24.04清理常见跟踪软件tracker

尽量一天一更&#xff0c;不刷视频&#xff0c;好好生活 打开系统监视器&#xff0c;发现开机有个tracker-miner-fs-fs3的跟踪程序&#xff0c;而且上传了10kb的数据。 搜索知&#xff0c;该程序会搜集应用和文件的信息。 删除tracker 显示带tracker的apt程序 sudo apt lis…

人脸识别打卡系统一站式开发【基于Pyqt5的C/S架构】

人脸识别打卡系统 1、运用场景 课堂签到,上班打卡,进出门身份验证。 2、功能架构 人脸录入,打卡签到,声音提醒,打卡信息导出: 3、技术栈 python3.8,sqlite3,opencv,face_recognition,PyQt5,csv 第三方库: asgiref==3.8.1 click==8.1.7 colorama==0.4.6 co…

Mobile ALOHA: 你需不需要一个能做家务的具身智能机器人

相信做机器人的朋友最近一段时间一定被斯坦福华人团队这个Mobile ALOHA的工作深深所震撼&#xff0c;这个工作研究了一个能做饭&#xff0c;收拾衣服&#xff0c;打扫卫生的服务机器人&#xff0c;完成了传统机器人所不能完成的诸多任务&#xff0c;向大家展示了服务机器人的美…

Java实现一个库存详情系统

本人详解 作者:王文峰,参加过 CSDN 2020年度博客之星,《Java王大师王天师》 公众号:JAVA开发王大师,专注于天道酬勤的 Java 开发问题中国国学、传统文化和代码爱好者的程序人生,期待你的关注和支持!本人外号:神秘小峯 山峯 转载说明:务必注明来源(注明:作者:王文峰…

Apache Seata配置管理原理解析

本文来自 Apache Seata官方文档&#xff0c;欢迎访问官网&#xff0c;查看更多深度文章。 本文来自 Apache Seata官方文档&#xff0c;欢迎访问官网&#xff0c;查看更多深度文章。 Apache Seata配置管理原理解析 说到Seata中的配置管理&#xff0c;大家可能会想到Seata中适配…

阶段三:项目开发---大数据开发运行环境搭建:任务8:安装配置Redis

任务描述 知识点&#xff1a;安装配置Redis 重 点&#xff1a; 安装配置Redis 难 点&#xff1a;无 内 容&#xff1a; Redis&#xff08;Remote Dictionary Server )&#xff0c;即远程字典服务&#xff0c;是一个开源的使用ANSI C语言编写、支持网络、可基于内存亦可…