cs231n作业2 双层神经网络

news2024/10/6 0:59:14

双层神经网络

在这里插入图片描述
在这里插入图片描述
我们选用ReLU函数和softmax函数:
在这里插入图片描述
步骤:
1、LOSS损失函数(前向传播)与梯度(后向传播)计算

Forward: 计算score,再根据score计算loss
Backward:分别对W2、b2、W1、b1求梯度

def loss(self, X, y=None, reg=0.0):
    # Unpack variables from the params dictionary
    W1, b1 = self.params['W1'], self.params['b1']
    W2, b2 = self.params['W2'], self.params['b2']
    N, D = X.shape

    # Compute the forward pass
    scores = None
    h1 = np.maximum(0, np.dot(X,W1) + b1) #(5,10)
    scores = np.dot(h1,W2) + b2 # (5,3)
    if y is None:
      return scores

    # Compute the loss
    loss = None
    exp_S = np.exp(scores) #(5,3)
    sum_exp_S = np.sum(exp_S,axis = 1) 
    sum_exp_S = sum_exp_S.reshape(-1,1) #(5,1)
    #print (sum_exp_S.shape)
    loss = np.sum(-scores[range(N),list(y)]) + sum(np.log(sum_exp_S))
    loss = loss / N + 0.5 * reg * np.sum(W1 * W1) +  0.5 * reg * np.sum(W2 * W2)
      
    # Backward pass: compute gradients
    grads = {}
    #---------------------------------#
    dscores = np.zeros(scores.shape)
    dscores[range(N),list(y)] = -1
    dscores += (exp_S/sum_exp_S) #(5,3) 
    dscores /= N
    grads['W2'] = np.dot(h1.T, dscores)
    grads['W2'] += reg * W2
    grads['b2'] = np.sum(dscores, axis = 0)
    #---------------------------------#
    dh1 = np.dot(dscores, W2.T)  #(5,10)
    dh1_ReLU = (h1>0) * dh1
    grads['W1'] = X.T.dot(dh1_ReLU) + reg * W1
    grads['b1'] = np.sum(dh1_ReLU, axis = 0)
    #---------------------------------#
      
    return loss, grads

2、训练函数 (迭代过程:forward–>backward–>update–>forward–>backward->update……)

def train(self, X, y, X_val, y_val,
            learning_rate=1e-3, learning_rate_decay=0.95,
            reg=5e-6, num_iters=100,
            batch_size=200, verbose=False):

    num_train = X.shape[0]
    iterations_per_epoch = max(num_train / batch_size, 1)

    # Use SGD to optimize the parameters in self.model
    loss_history = []
    train_acc_history = []
    val_acc_history = []

    for it in xrange(num_iters):
      X_batch = None
      y_batch = None

      mask = np.random.choice(num_train,batch_size,replace = True)
      X_batch = X[mask]
      y_batch = y[mask]

      # Compute loss and gradients using the current minibatch
      loss, grads = self.loss(X_batch, y=y_batch, reg=reg)
      loss_history.append(loss)

      self.params['W1'] += -learning_rate * grads['W1']
      self.params['b1'] += -learning_rate * grads['b1']
      self.params['W2'] += -learning_rate * grads['W2']
      self.params['b2'] += -learning_rate * grads['b2']

      if verbose and it % 100 == 0:
        print('iteration %d / %d: loss %f' % (it, num_iters, loss))

      # Every epoch, check train and val accuracy and decay learning rate.
      if it % iterations_per_epoch == 0:
        # Check accuracy
        #print ('第%d个epoch' %it)
        train_acc = (self.predict(X_batch) == y_batch).mean()
        val_acc = (self.predict(X_val) == y_val).mean()
        train_acc_history.append(train_acc)
        val_acc_history.append(val_acc)

        # Decay learning rate
        learning_rate *= learning_rate_decay #减小学习率

    return {
      'loss_history': loss_history,
      'train_acc_history': train_acc_history,
      'val_acc_history': val_acc_history,
    }

3、预测函数
4、参数训练

用于机器视觉识别的卷积神经网络

多层全连接神经网络

两个基本的layer:

def affine_forward(x, w, b):
  out = None
  N=x.shape[0]
  x_new=x.reshape(N,-1)#转为二维向量
  out=np.dot(x_new,w)+b
  cache = (x, w, b) # 不需要保存out
  return out, cache


def affine_backward(dout, cache):
  x, w, b = cache
  dx, dw, db = None, None, None
  dx=np.dot(dout,w.T)
  dx=np.reshape(dx,x.shape)
  x_new=x.reshape(x.shape[0],-1)
  dw=np.dot(x_new.T,dout) 
  db=np.sum(dout,axis=0,keepdims=True)
 
  return dx, dw, db


def relu_forward(x):
  out = None
  out=np.maximum(0,x)
  cache = x
  return out, cache


def relu_backward(dout, cache):
  dx, x = None, cache
  return dx

构建一个Sandwich的层:

def affine_relu_forward(x, w, b):
  a, fc_cache = affine_forward(x, w, b)
  out, relu_cache = relu_forward(a)
  cache = (fc_cache, relu_cache)
  return out, cache

def affine_relu_backward(dout, cache):
  fc_cache, relu_cache = cache
  da = relu_backward(dout, relu_cache)
  dx, dw, db = affine_backward(da, fc_cache)
  return dx, dw, db

FullyConnectedNet:

class FullyConnectedNet(object):
 
   def __init__(self, hidden_dims, input_dim=3*32*32, num_classes=10,
                dropout=0, use_batchnorm=False, reg=0.0,
                weight_scale=1e-2, dtype=np.float32, seed=None):
     self.use_batchnorm = use_batchnorm
     self.use_dropout = dropout > 0
     self.reg = reg
     self.num_layers = 1 + len(hidden_dims)
     self.dtype = dtype
     self.params = {}
 
     layers_dims = [input_dim] + hidden_dims + [num_classes] #z这里存储的是每个layer的大小
     for i in xrange(self.num_layers):
         self.params['W' + str(i + 1)] = weight_scale * np.random.randn(layers_dims[i], layers_dims[i + 1])
         self.params['b' + str(i + 1)] = np.zeros((1, layers_dims[i + 1]))
         if self.use_batchnorm and i < len(hidden_dims):#最后一层是不需要batchnorm的
             self.params['gamma' + str(i + 1)] = np.ones((1, layers_dims[i + 1]))
             self.params['beta' + str(i + 1)] = np.zeros((1, layers_dims[i + 1]))
 
     self.dropout_param = {}
     if self.use_dropout:
             self.dropout_param = {'mode': 'train', 'p': dropout}
     if seed is not None:
         self.dropout_param['seed'] = seed
     

     self.bn_params = []
     if self.use_batchnorm:
             self.bn_params = [{'mode': 'train'} for i in xrange(self.num_layers - 1)]
     
     # Cast all parameters to the correct datatype
     for k, v in self.params.iteritems():
             self.params[k] = v.astype(dtype)
 
 
   def loss(self, X, y=None):

     X = X.astype(self.dtype)
     mode = 'test' if y is None else 'train'
     if self.dropout_param is not None:
             self.dropout_param['mode'] = mode
     if self.use_batchnorm:
             for bn_param in self.bn_params:
                 bn_param[mode] = mode
 
     scores = None

     h, cache1, cache2, cache3,cache4, bn, out = {}, {}, {}, {}, {}, {},{}
     out[0] = X #存储每一层的out,按照逻辑,X就是out0[0]
 
     # Forward pass: compute loss
     for i in xrange(self.num_layers - 1):
         # 得到每一层的参数
         w, b = self.params['W' + str(i + 1)], self.params['b' + str(i + 1)]
         if self.use_batchnorm:
             gamma, beta = self.params['gamma' + str(i + 1)], self.params['beta' + str(i + 1)]
             h[i], cache1[i] = affine_forward(out[i], w, b)
             bn[i], cache2[i] = batchnorm_forward(h[i], gamma, beta, self.bn_params[i])
             out[i + 1], cache3[i] = relu_forward(bn[i])
             if self.use_dropout:
                 out[i+1], cache4[i] = dropout_forward(out[i+1]  , self.dropout_param)
         else:
             out[i + 1], cache3[i] = affine_relu_forward(out[i], w, b)
             if self.use_dropout:
                 out[i + 1], cache4[i] = dropout_forward(out[i + 1], self.dropout_param)
 
     W, b = self.params['W' + str(self.num_layers)], self.params['b' + str(self.num_layers)]
     scores, cache = affine_forward(out[self.num_layers - 1], W, b) #对最后一层进行计算
     if mode == 'test':
       return scores
 
     loss, grads = 0.0, {}
     data_loss, dscores = softmax_loss(scores, y)
     reg_loss = 0
     for i in xrange(self.num_layers):
         reg_loss += 0.5 * self.reg * np.sum(self.params['W' + str(i + 1)] * self.params['W' + str(i + 1)])
     loss = data_loss + reg_loss
 
     # Backward pass: compute gradients
     dout, dbn, dh, ddrop = {}, {}, {}, {}
     t = self.num_layers - 1
     dout[t], grads['W' + str(t + 1)], grads['b' + str(t + 1)] = affine_backward(dscores, cache)#这个cache就是上面得到的
     for i in xrange(t):
         if self.use_batchnorm:
             if self.use_dropout:
                 dout[t - i] = dropout_backward(dout[t-i], cache4[t-1-i])
             dbn[t - 1 - i] = relu_backward(dout[t - i], cache3[t - 1 - i])
             dh[t - 1 - i], grads['gamma' + str(t - i)], grads['beta' + str(t - i)] = batchnorm_backward(dbn[t - 1 - i],cache2[t - 1 - i])
             dout[t - 1 - i], grads['W' + str(t - i)], grads['b' + str(t - i)] = affine_backward(dh[t - 1 - i],cache1[t - 1 - i])
         else:
             if self.use_dropout:
                 dout[t - i] = dropout_backward(dout[t - i], cache4[t - 1 - i])
 
             dout[t - 1 - i], grads['W' + str(t - i)], grads['b' + str(t - i)] = affine_relu_backward(dout[t - i],cache3[t - 1 - i])
     # Add the regularization gradient contribution
     for i in xrange(self.num_layers):
         grads['W' + str(i + 1)] += self.reg * self.params['W' + str(i + 1)]
     return loss, grads

使用slover来对神经网络进优化求解

之后进行参数更新:

  1. SGD
  2. Momentum
  3. Nestero
  4. RMSProp and Adam

批量规范化

在这里插入图片描述

BN层前向传播:
在这里插入图片描述

BN层反向传播:
在这里插入图片描述

def batchnorm_forward(x, gamma, beta, bn_param):
    mode = bn_param['mode']  #因为train和test是两种不同的方法
    eps = bn_param.get('eps', 1e-5)
    momentum = bn_param.get('momentum', 0.9)
    N, D = x.shape
    running_mean = bn_param.get('running_mean', np.zeros(D, dtype=x.dtype))
    running_var = bn_param.get('running_var', np.zeros(D, dtype=x.dtype))

    out, cache = None, None
    if mode == 'train':    
        sample_mean = np.mean(x, axis=0, keepdims=True)       # [1,D]    
        sample_var = np.var(x, axis=0, keepdims=True)         # [1,D] 
        x_normalized = (x - sample_mean) / np.sqrt(sample_var + eps)    # [N,D]    
        out = gamma * x_normalized + beta    
        cache = (x_normalized, gamma, beta, sample_mean, sample_var, x, eps)    
        running_mean = momentum * running_mean + (1 - momentum) * sample_mean    #通过moument得到最终的running_mean和running_var
        running_var = momentum * running_var + (1 - momentum) * sample_var
    elif mode == 'test':    
        x_normalized = (x - running_mean) / np.sqrt(running_var + eps)    #test的时候如何通过BN层
        out = gamma * x_normalized + beta
    else:    
        raise ValueError('Invalid forward batchnorm mode "%s"' % mode)

    # Store the updated running means back into bn_param
    bn_param['running_mean'] = running_mean
    bn_param['running_var'] = running_var

    return out, cache

def batchnorm_backward(dout, cache):
    dx, dgamma, dbeta = None, None, None
    x_normalized, gamma, beta, sample_mean, sample_var, x, eps = cache
    N, D = x.shape
    dx_normalized = dout * gamma       # [N,D]
    x_mu = x - sample_mean             # [N,D]
    sample_std_inv = 1.0 / np.sqrt(sample_var + eps)    # [1,D]
    dsample_var = -0.5 * np.sum(dx_normalized * x_mu, axis=0, keepdims=True) * sample_std_inv**3
    dsample_mean = -1.0 * np.sum(dx_normalized * sample_std_inv, axis=0, keepdims=True) - \                                
                                   2.0 * dsample_var * np.mean(x_mu, axis=0, keepdims=True)
    dx1 = dx_normalized * sample_std_inv
    dx2 = 2.0/N * dsample_var * x_mu
    dx = dx1 + dx2 + 1.0/N * dsample_mean
    dgamma = np.sum(dout * x_normalized, axis=0, keepdims=True)
    dbeta = np.sum(dout, axis=0, keepdims=True)

    return dx, dgamma, dbeta

Batch Normalization解决的一个重要问题就是梯度饱和。

Dropout

训练的时候以一定的概率来去每层的神经元:
在这里插入图片描述
可以防止过拟合。还可以理解为dropout是一个正则化的操作,他在每次训练的时候,强行让一些feature为0,这样提高了网络的稀疏表达能力。

def dropout_forward(x, dropout_param):
    p, mode = dropout_param['p'], dropout_param['mode']
    if 'seed' in dropout_param:  
        np.random.seed(dropout_param['seed'])

    mask = None
    out = None
    if mode == 'train':    
        mask = (np.random.rand(*x.shape) < p) / p    #注意这里除以了一个P,这样在test的输出的时候,维持原样即可
        out = x * mask
    elif mode == 'test':    
        out = x

    cache = (dropout_param, mask)
    out = out.astype(x.dtype, copy=False)

    return out, cache


def dropout_backward(dout, cache):
    dropout_param, mask = cache
    mode = dropout_param['mode']
    dx = None

    if mode == 'train':    
        dx = dout * mask
    elif mode == 'test':    
        dx = dout

    return dx

卷积神经网络

卷积层的前向传播与反向传播
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

def conv_forward_naive(x, w, b, conv_param):
    stride, pad = conv_param['stride'], conv_param['pad']
    N, C, H, W = x.shape
    F, C, HH, WW = w.shape
    x_padded = np.pad(x, ((0, 0), (0, 0), (pad, pad), (pad, pad)), mode='constant') #补零
    H_new = 1 + (H + 2 * pad - HH) / stride
    W_new = 1 + (W + 2 * pad - WW) / stride
    s = stride
    out = np.zeros((N, F, H_new, W_new))

    for i in xrange(N):       # ith image    
        for f in xrange(F):   # fth filter        
            for j in xrange(H_new):            
                for k in xrange(W_new):                
                    out[i, f, j, k] = np.sum(x_padded[i, :, j*s:HH+j*s, k*s:WW+k*s] * w[f]) + b[f]#对应位相乘

    cache = (x, w, b, conv_param)

    return out, cache


def conv_backward_naive(dout, cache):
    x, w, b, conv_param = cache
    pad = conv_param['pad']
    stride = conv_param['stride']
    F, C, HH, WW = w.shape
    N, C, H, W = x.shape
    H_new = 1 + (H + 2 * pad - HH) / stride
    W_new = 1 + (W + 2 * pad - WW) / stride

    dx = np.zeros_like(x)
    dw = np.zeros_like(w)
    db = np.zeros_like(b)

    s = stride
    x_padded = np.pad(x, ((0, 0), (0, 0), (pad, pad), (pad, pad)), 'constant')
    dx_padded = np.pad(dx, ((0, 0), (0, 0), (pad, pad), (pad, pad)), 'constant')

    for i in xrange(N):       # ith image    
        for f in xrange(F):   # fth filter        
            for j in xrange(H_new):            
                for k in xrange(W_new):                
                    window = x_padded[i, :, j*s:HH+j*s, k*s:WW+k*s]
                    db[f] += dout[i, f, j, k]                
                    dw[f] += window * dout[i, f, j, k]                
                    dx_padded[i, :, j*s:HH+j*s, k*s:WW+k*s] += w[f] * dout[i, f, j, k]#上面的式子,关键就在于+号

    # Unpad
    dx = dx_padded[:, :, pad:pad+H, pad:pad+W]

    return dx, dw, db

池化层

def max_pool_forward_naive(x, pool_param):
    HH, WW = pool_param['pool_height'], pool_param['pool_width']
    s = pool_param['stride']
    N, C, H, W = x.shape
    H_new = 1 + (H - HH) / s
    W_new = 1 + (W - WW) / s
    out = np.zeros((N, C, H_new, W_new))
    for i in xrange(N):    
        for j in xrange(C):        
            for k in xrange(H_new):            
                for l in xrange(W_new):                
                    window = x[i, j, k*s:HH+k*s, l*s:WW+l*s] 
                    out[i, j, k, l] = np.max(window)

    cache = (x, pool_param)

    return out, cache


def max_pool_backward_naive(dout, cache):
    x, pool_param = cache
    HH, WW = pool_param['pool_height'], pool_param['pool_width']
    s = pool_param['stride']
    N, C, H, W = x.shape
    H_new = 1 + (H - HH) / s
    W_new = 1 + (W - WW) / s
    dx = np.zeros_like(x)
    for i in xrange(N):    
        for j in xrange(C):        
            for k in xrange(H_new):            
                for l in xrange(W_new):                
                    window = x[i, j, k*s:HH+k*s, l*s:WW+l*s]                
                    m = np.max(window)               #获得之前的那个值,这样下面只要windows==m就能得到相应的位置
                    dx[i, j, k*s:HH+k*s, l*s:WW+l*s] = (window == m) * dout[i, j, k, l]

    return dx

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1903604.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

品质至上!中国星坤连接器的发展之道!

在电子连接技术领域&#xff0c;中国星坤以其卓越的创新能力和对品质的不懈追求&#xff0c;赢得了业界的广泛认可。凭借在高精度连接器设计和制造上的领先地位&#xff0c;星坤不仅获得了多项实用新型专利&#xff0c;更通过一系列国际质量管理体系认证&#xff0c;彰显了其产…

知识社区在线提问小程序模板源码

蓝色的知识问答&#xff0c;问答交流&#xff0c;知识社区&#xff0c;在线提问手机app小程序网页模板。包含&#xff1a;社区主页、提问、我的、绑定手机&#xff0c;实名认证等。 知识社区在线提问小程序模板源码

P5. 微服务: Bot代码的执行

P5. 微服务: Bot代码的执行 0 概述1 Bot代码执行框架2 Bot代码传递给BotRunningSystem3 微服务: Bot代码执行的实现逻辑3.1 整体微服务逻辑概述3.2 生产者消费者模型实现3.3 consume() 执行代码函数的实现3.4 执行结果返回给 nextStep 4 扩展4.1 Bot代码的语言 0 概述 本章介绍…

Keysight 是德 DSA91304A 高性能示波器

Keysight 是德 DSA91304A 高性能示波器 DSA91304A Infiniium 高性能示波器&#xff1a;13 GHz 13 GHz4个模拟通道高达 1 Gpts 存储器和 40 GSa/s 采样率可以提供更完整的信号迹线捕获50 mV/格时低至 1.73 mVrms 的本底噪声和深入的抖动分析功能可以确保卓越的测量精度硬件加速…

C语言_数据的存储

数据类型介绍 1. 整形家族 //字符存储的时候&#xff0c;存储的是ASCII值&#xff0c;是整型 //char 默认是unsigned char还是signed char标准没有规定&#xff0c;其他类型都默认是signed char&#xff0c;unsigned char&#xff0c;signed char short&#xff0c;unsigned s…

windows机器免密登录linux主机

1. 正常连接需要输入密码 ssh root1.1.1.1 2. 在Windows上生成SSH密钥对&#xff08;如果你还没有的话&#xff09;&#xff1a; ssh-keygen 3. scp将id_rsa.pub传输到对应的主机 4.对应机器上查看 5.从windows上免密登录

rsyslog日志转发

前言 Rsyslog可用于接受来自各种来源(本地和网络)的输入&#xff0c;转换它们&#xff0c;并将结果输出到不同&#xff08;通过模板和filter过滤&#xff09;的目的地&#xff08;目录文件中&#xff09; rsyslog是一个开源工具&#xff0c;被广泛用于Linux系统以通过TCP/UDP…

cs231n 作业3

使用普通RNN进行图像标注 单个RNN神经元行为 前向传播&#xff1a; 反向传播&#xff1a; def rnn_step_backward(dnext_h, cache):dx, dprev_h, dWx, dWh, db None, None, None, None, Nonex, Wx, Wh, prev_h, next_h cachedtanh 1 - next_h**2dx (dnext_h*dtanh).dot(…

第T4周:使用TensorFlow实现猴痘病识别

&#x1f368; 本文为&#x1f517;365天深度学习训练营 中的学习记录博客&#x1f356; 原作者&#xff1a;K同学啊 文章目录 一、前期工作1.设置GPU&#xff08;如果使用的是CPU可以忽略这步&#xff09;2. 导入数据3. 查看数据 二、数据预处理1、加载数据2、数据可视化3、再…

人脸识别课堂签到系统【PyQt5实现】

人脸识别签到系统 1、运用场景 课堂签到,上班打卡,进出门身份验证。 2、功能类别 人脸录入,打卡签到,声音提醒,打卡信息导出,打包成exe可执行文件 3、技术栈 python3.8,sqlite3,opencv,face_recognition,PyQt5,csv 4、流程图 1、导入库 2、编写UI界面 3、打…

Linux服务器使用总结-不定时更新

# 查看升级日志 cat /var/log/dpkg.log |grep nvidia|grep libnvidia-common

C++ 多态篇

文章目录 1. 多态的概念和实现1.1 概念1.2 实现1.2.1 协变1.2.2 析构函数1.2.3 子类虚函数不加virtual 2. C11 final和override3.1 final3.2 override 3. 函数重载、重写与隐藏4. 多态的原理5. 抽象类6.单继承和多继承的虚表6.1 单继承6.2 多继承 7. 菱形继承的虚表(了解)7.1 菱…

为企业知识库选模型?全球AI大模型知识库RAG场景基准测试排名

大语言模型常见基准测试 大家对于AI模型理解和推理能力的的基准测试一定非常熟悉了&#xff0c;比如MMLU&#xff08;大规模多任务语言理解&#xff09;、GPQA&#xff08;研究生级别知识问答&#xff09;、GSMSK&#xff08;研究生数学知识考察&#xff09;、MATH&#xff08…

NextJs - SSR渲染解决antd首屏加载CSS样式的闪烁问题

NextJs - SSR渲染解决antd首屏加载CSS样式的闪烁问题 闪烁现状解决方案 闪烁现状 我们写一个非常简单的页面&#xff1a; import { Button } from antdexport default async function Page() {return <><Button typeprimary>AAA</Button></> }NextJs…

Linux防火墙使用(firewalld与iptables)

防火墙概述 防火墙是一种由硬件和软件组合而成&#xff0c;在内部网和外部网之间、专有网和公共网之间构造的保护屏障&#xff0c;用以保护用户资料和信息安全的一种技术 防火墙作用在于及时发现并处理计算机网络运行时可能存在的安全风险、数据传输等问题&#xff0c;从而实现…

SSRF靶场通关合集

目录 前言 SSRF总结 1.pikachu 1.1SSRF(curl) 1.1.1http协议 1.1.2 file协议查看本地文件 1.1.3 dict协议扫描内网主机开放端口 1.2 SSRF&#xff08;file_get_content&#xff09; 1.2.1 file读取本地文件 1.2.2 php://filter/读php源代码 2.DoraBox靶场 前言 最近…

[终端安全]-3 移动终端之硬件安全(TEE)

&#xff08;参考资料&#xff1a;TrustZone for V8-A. pdf&#xff0c;来源ARM DEVELOPER官网&#xff09; TEE&#xff08;Trusted Execution Environment&#xff0c;可信执行环境&#xff09;是用于执行敏感代码和处理敏感数据的独立安全区域&#xff1b;以ARM TrustZone为…

一.2.(3)放大电路的图解分析方法和微变等效电路分析方法;

放大电路的主要分析方法:图解法、微变等效电路法 这里以共射放大电路为例 (1) 图解法: 1.静态分析 首先确定静态工作点Q,然后根据电路的特点,做出直流负载线,进而画出交流负载线,最后,画出各极电流电压的波形。求出最大不失真输出电压。 估算IBQ&#xff0c;然后根据数据手册里…

『大模型笔记』《Pytorch实用教程》(第二版)

『大模型笔记』《Pytorch实用教程》(第二版) 文章目录 一. 《Pytorch实用教程》(第二版)1.1 上篇1.2 中篇1.3 下篇1.4 本书亮点1.5 本书内容及结构二. 参考文献🖥️ 配套代码(开源免费):https://github.com/TingsongYu/PyTorch-Tutorial-2nd📚 在线阅读(开源免费)…

WebAssembly场景及未来

引言 从前面的文章中&#xff0c;我们已经了解了 WebAssembly&#xff08;WASM&#xff09; 的基本知识&#xff0c;演进历程&#xff0c;以及简单的使用方法。通过全面了解了WebAssembly的设计初衷和优势&#xff0c;我们接下来要知道在什么样的场景中我们会使用 WASM 呢&…