C语言_数据的存储

news2024/11/26 20:39:35

数据类型介绍

1. 整形家族

//字符存储的时候,存储的是ASCII值,是整型

//char 默认是unsigned char还是signed char标准没有规定,其他类型都默认是signed

char,unsigned char,signed char

short,unsigned short

int,unsigned int

long,unsigned long

关于char的取值范围 

2. 浮点数家族

float

double

long double

3. 构造类型(自定义类型)

数组类型

结构体类型 struct

枚举类型 enum

联合类型 union

4. 指针类型

int* pi;

char* pc;

float* pf;

void* pv;

结构体的指针

...

5. 空类型

void 表示空类型(无类型)

通常应用于函数的返回类型、函数的参数、指针类型。


整形在内存中的存储

1. 原码、反码、补码

1. 计算机中的整数有三种2进制表示方法,即原码、反码和补码。

2. 三种表示方法均有符号位和数值位两部分,最高位是符号位,符号位都是用0表示“正”,用1表示“负”。

3. 正整数的原、反、补码都相同。

4. 负整数的三种表示方法各不相同,

原码:直接将数值按照正负数的形式翻译成二进制就可以得到原码。

反码:将原码的符号位不变,其他位依次按位取反就可以得到反码。

补码:反码+1就得到补码。

下面是原反补例子

int num = 10; //创建一个变量叫num,num向内存申请4个字节来存放数据
//4个字节是32个比特位
//00000000 00000000 00000000 00001010 原码
//00000000 00000000 00000000 00001010 反码
//00000000 00000000 00000000 00001010 补码

int num2 = -10;
//10000000 00000000 00000000 00001010 原码
//11111111 11111111 11111111 11110101 反码
//11111111 11111111 11111111 11110110 补码

对于整形来说:数据存放内存中其实存放的是补码。为什么呢?

在计算机系统中,数值一律用补码来表示和存储。

原因在于使用补码可以将符号位和数值位统一处理,

同时,加法和减法也可以统一处理(CPU只有加法器)

此外,补码与原码相互转换,其运算过程 是相同的,不需要额外的硬件电路。

一个例子讲述为什么要补码,因为有些东西原码算不了

计算1 - 1 也就是1 + (-1)

原码计算

00000000 00000000 00000000 00000001     1的原码

10000000 00000000 00000000 00000001    -1的原码

10000000 00000000 00000000 00000010    相加后等于-2 

下面是补码计算

00000000 00000000 00000000 00000001     1的补码

11111111   11111111   11111111  11111111       -1的补码

00000000 00000000 00000000 00000000     相加后的等于0

2. 大小端介绍

什么是大端小端?

大端存储模式,是指数据的低位保存在内存的高地址中,而数据的高位保存在内存的低地址中;

小端存储模式,是指数据的低位保存在内存的低地址中,而数据的高位保存在内存的高地址中。

 为什么有大端和小端?

这是因为在计算机系统中,我们是以字节为单位的,每个地址单元都对应着一个字节,一个字节为8bit。但是在C语言中除了8 bit的char之外,还有16 bit的short型,32 bit的long型(要看具体的编译器),另外,对于位数大于8位的处理器,例如16位或者32位的处理器,由于寄存器宽度大于一个字节,那么必然存在着一个如何将多个字节安排的问题。因此就导致了大端存储模式和小端存储模式。

 设计一个函数来判断当前机器的字节序。

//思路:利用char*只访问第一个字节来判断差异
//只能输入1,返回1是小端,0是大端
int check(int a) { return *(char*)&a; }

int main()
{
	if (check(1)) printf("small\n"); // 01 00 00 00
	else printf("big\n"); //00 00 00 01    
	return 0;
}

3. 练习 

浮点型在内存中的存储

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1903598.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

windows机器免密登录linux主机

1. 正常连接需要输入密码 ssh root1.1.1.1 2. 在Windows上生成SSH密钥对(如果你还没有的话): ssh-keygen 3. scp将id_rsa.pub传输到对应的主机 4.对应机器上查看 5.从windows上免密登录

rsyslog日志转发

前言 Rsyslog可用于接受来自各种来源(本地和网络)的输入,转换它们,并将结果输出到不同(通过模板和filter过滤)的目的地(目录文件中) rsyslog是一个开源工具,被广泛用于Linux系统以通过TCP/UDP…

cs231n 作业3

使用普通RNN进行图像标注 单个RNN神经元行为 前向传播: 反向传播: def rnn_step_backward(dnext_h, cache):dx, dprev_h, dWx, dWh, db None, None, None, None, Nonex, Wx, Wh, prev_h, next_h cachedtanh 1 - next_h**2dx (dnext_h*dtanh).dot(…

第T4周:使用TensorFlow实现猴痘病识别

🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊 文章目录 一、前期工作1.设置GPU(如果使用的是CPU可以忽略这步)2. 导入数据3. 查看数据 二、数据预处理1、加载数据2、数据可视化3、再…

人脸识别课堂签到系统【PyQt5实现】

人脸识别签到系统 1、运用场景 课堂签到,上班打卡,进出门身份验证。 2、功能类别 人脸录入,打卡签到,声音提醒,打卡信息导出,打包成exe可执行文件 3、技术栈 python3.8,sqlite3,opencv,face_recognition,PyQt5,csv 4、流程图 1、导入库 2、编写UI界面 3、打…

Linux服务器使用总结-不定时更新

# 查看升级日志 cat /var/log/dpkg.log |grep nvidia|grep libnvidia-common

C++ 多态篇

文章目录 1. 多态的概念和实现1.1 概念1.2 实现1.2.1 协变1.2.2 析构函数1.2.3 子类虚函数不加virtual 2. C11 final和override3.1 final3.2 override 3. 函数重载、重写与隐藏4. 多态的原理5. 抽象类6.单继承和多继承的虚表6.1 单继承6.2 多继承 7. 菱形继承的虚表(了解)7.1 菱…

为企业知识库选模型?全球AI大模型知识库RAG场景基准测试排名

大语言模型常见基准测试 大家对于AI模型理解和推理能力的的基准测试一定非常熟悉了,比如MMLU(大规模多任务语言理解)、GPQA(研究生级别知识问答)、GSMSK(研究生数学知识考察)、MATH&#xff08…

NextJs - SSR渲染解决antd首屏加载CSS样式的闪烁问题

NextJs - SSR渲染解决antd首屏加载CSS样式的闪烁问题 闪烁现状解决方案 闪烁现状 我们写一个非常简单的页面&#xff1a; import { Button } from antdexport default async function Page() {return <><Button typeprimary>AAA</Button></> }NextJs…

Linux防火墙使用(firewalld与iptables)

防火墙概述 防火墙是一种由硬件和软件组合而成&#xff0c;在内部网和外部网之间、专有网和公共网之间构造的保护屏障&#xff0c;用以保护用户资料和信息安全的一种技术 防火墙作用在于及时发现并处理计算机网络运行时可能存在的安全风险、数据传输等问题&#xff0c;从而实现…

SSRF靶场通关合集

目录 前言 SSRF总结 1.pikachu 1.1SSRF(curl) 1.1.1http协议 1.1.2 file协议查看本地文件 1.1.3 dict协议扫描内网主机开放端口 1.2 SSRF&#xff08;file_get_content&#xff09; 1.2.1 file读取本地文件 1.2.2 php://filter/读php源代码 2.DoraBox靶场 前言 最近…

[终端安全]-3 移动终端之硬件安全(TEE)

&#xff08;参考资料&#xff1a;TrustZone for V8-A. pdf&#xff0c;来源ARM DEVELOPER官网&#xff09; TEE&#xff08;Trusted Execution Environment&#xff0c;可信执行环境&#xff09;是用于执行敏感代码和处理敏感数据的独立安全区域&#xff1b;以ARM TrustZone为…

一.2.(3)放大电路的图解分析方法和微变等效电路分析方法;

放大电路的主要分析方法:图解法、微变等效电路法 这里以共射放大电路为例 (1) 图解法: 1.静态分析 首先确定静态工作点Q,然后根据电路的特点,做出直流负载线,进而画出交流负载线,最后,画出各极电流电压的波形。求出最大不失真输出电压。 估算IBQ&#xff0c;然后根据数据手册里…

『大模型笔记』《Pytorch实用教程》(第二版)

『大模型笔记』《Pytorch实用教程》(第二版) 文章目录 一. 《Pytorch实用教程》(第二版)1.1 上篇1.2 中篇1.3 下篇1.4 本书亮点1.5 本书内容及结构二. 参考文献🖥️ 配套代码(开源免费):https://github.com/TingsongYu/PyTorch-Tutorial-2nd📚 在线阅读(开源免费)…

WebAssembly场景及未来

引言 从前面的文章中&#xff0c;我们已经了解了 WebAssembly&#xff08;WASM&#xff09; 的基本知识&#xff0c;演进历程&#xff0c;以及简单的使用方法。通过全面了解了WebAssembly的设计初衷和优势&#xff0c;我们接下来要知道在什么样的场景中我们会使用 WASM 呢&…

多表查询sql

概述&#xff1a;项目开发中,在进行数据库表结构设计时,会根据业务需求及业务模块之间的关系,分析并设计表结构,由于业务之间相互关联,所以各个表结构之间也存在着各种联系&#xff0c;分为三种&#xff1a; 一对多多对多一对一 一、多表关系 一对多 案例&#xff1a;部门与…

昇思25天学习打卡营第17天 | K近邻算法实现红酒聚类

内容介绍&#xff1a; K近邻算法&#xff08;K-Nearest-Neighbor, KNN&#xff09;是一种用于分类和回归的非参数统计方法&#xff0c;是机器学习最基础的算法之一。它正是基于以上思想&#xff1a;要确定一个样本的类别&#xff0c;可以计算它与所有训练样本的距离&#xff0…

nacos-sdk-python——Python版本Nacos客户端

Nacos&#xff08;Naming and Configuration Service&#xff09;是阿里巴巴开源的一款动态服务发现、配置管理和服务管理平台。它主要用于解决微服务架构中服务发现和配置管理的问题&#xff0c;提供了一站式解决方案。以下是 Nacos 的几个关键功能&#xff1a; 服务发现和健康…

Ubuntu24.04清理常见跟踪软件tracker

尽量一天一更&#xff0c;不刷视频&#xff0c;好好生活 打开系统监视器&#xff0c;发现开机有个tracker-miner-fs-fs3的跟踪程序&#xff0c;而且上传了10kb的数据。 搜索知&#xff0c;该程序会搜集应用和文件的信息。 删除tracker 显示带tracker的apt程序 sudo apt lis…

人脸识别打卡系统一站式开发【基于Pyqt5的C/S架构】

人脸识别打卡系统 1、运用场景 课堂签到,上班打卡,进出门身份验证。 2、功能架构 人脸录入,打卡签到,声音提醒,打卡信息导出: 3、技术栈 python3.8,sqlite3,opencv,face_recognition,PyQt5,csv 第三方库: asgiref==3.8.1 click==8.1.7 colorama==0.4.6 co…