设计模式-软件设计原则

news2025/2/24 3:01:11

目录

3.软件设计原则

3.1 开闭原则

3.2 里氏代换原则

3.3 依赖倒转原则

3.4 接口隔离原则

3.5 迪米特法则

3.6 合成复用原则


3.软件设计原则

在软件开发中,为了提高软件系统的可维护性和可复用性,增加软件的可扩展性和灵活性,程序员要尽量根据6条原则来开发程序,从而提高软件开发效率、节约软件开发成本和维护成本。

3.1 开闭原则

对扩展开放,对修改关闭。在程序需要进行拓展的时候,不能去修改原有的代码,实现一个热插拔的效果。简言之,是为了使程序的扩展性好,易于维护和升级。想要达到这样的效果,我们需要使用接口和抽象类。

因为抽象灵活性好,适应性广,只要抽象的合理,可以基本保持软件架构的稳定。而软件中易变的细节可以从抽象派生来的实现类来进行扩展,当软件需要发生变化时,只需要根据需求重新派生一个实现类来扩展就可以了。

下面以 搜狗输入法 的皮肤为例介绍开闭原则的应用。

【例】搜狗输入法 的皮肤设计。

分析:搜狗输入法 的皮肤是输入法背景图片、窗口颜色和声音等元素的组合。用户可以根据自己的喜爱更换自己的输入法的皮肤,也可以从网上下载新的皮肤。这些皮肤有共同的特点,可以为其定义一个抽象类(AbstractSkin),而每个具体的皮肤(DefaultSpecificSkin和HeimaSpecificSkin)是其子类。用户窗体可以根据需要选择或者增加新的主题,而不需要修改原代码,所以它是满足开闭原则的。

 编码如下:

抽象类:变化的细节由继承者实现

package com.messi.principles.demo1;

/**
 * @Description: 抽象皮肤类
 * @Author: etcEriksen
 * @Date: 2023/1/30
 **/
public abstract class AbstractSkin {

    //显示的方法
    public abstract void display();

}

抽象实现类:

package com.messi.principles.demo1;

/**
 * @Description: 默认皮肤类
 * @Author: etcEriksen
 * @Date: 2023/1/30
 **/
public class DefaultSkin extends AbstractSkin{
    @Override
    public void display() {
        System.out.println("默认皮肤");
    }
}
package com.messi.principles.demo1;

/**
 * @Description: 黑马皮肤类
 * @Author: etcEriksen
 * @Date: 2023/1/30
 **/
public class HeimaSkin extends AbstractSkin{
    @Override
    public void display() {
        System.out.println("黑马皮肤");
    }
}

搜狗输入法类实现皮肤调换的功能:

package com.messi.principles.demo1;

/**
 * @Description: 搜狗输入法进行调换皮肤
 * @Author: etcEriksen
 * @Date: 2023/1/30
 **/
public class SougouInput {

    private AbstractSkin skin ;

    public void setSkin(AbstractSkin skin) {
        this.skin = skin;
    }

    public void display() {
        skin.display();
    }

}

测试类:

package com.messi.principles.demo1;

/**
 * @Description: 操作类
 * @Author: etcEriksen
 * @Date: 2023/1/30
 **/
public class Client {

    public static void main(String[] args) {
        //1.创建搜狗输入法对象
        SougouInput sougouInput = new SougouInput();
        //2.创建任意的皮肤对象
        //DefaultSkin defaultSkin = new DefaultSkin();
        HeimaSkin heimaSkin = new HeimaSkin();
        //3.将皮肤设置到输入法中
        sougouInput.setSkin(heimaSkin);
        //4.显示皮肤
        sougouInput.display();
    }


}

3.2 里氏代换原则

里氏代换原则是面向对象设计的基本原则之一。

里氏代换原则:任何基类可以出现的地方,子类一定可以出现。简言之:子类可以扩展父类的功能,但是不能改变父类原有的功能。换句话说,子类继承父类时,除添加新的方法完成新增功能外,尽量不要重写父类的方法

如果通过重写父类的方法来完成新的功能,这样写起来虽然简单,但是整个继承体系的可复用性会比较差,特别是运用多态比较频繁时,程序运行出错的概率会非常大。

下面看一个里氏替换原则中经典的一个例子

【例】正方形不是长方形。

在数学领域里,正方形毫无疑问是长方形,它是一个长宽相等的长方形。所以,我们开发的一个与几何图形相关的软件系统,就可以顺理成章的让正方形继承自长方形。

代码如下:

长方形类(Rectangle):

public class Rectangle {
    private double length;
    private double width;
​
    public double getLength() {
        return length;
    }
​
    public void setLength(double length) {
        this.length = length;
    }
​
    public double getWidth() {
        return width;
    }
​
    public void setWidth(double width) {
        this.width = width;
    }
}

正方形(Square):

由于正方形的长和宽相同,所以在方法setLength和setWidth中,对长度和宽度都需要赋相同值。

public class Square extends Rectangle {
    
    public void setWidth(double width) {
        super.setLength(width);
        super.setWidth(width);
    }
​
    public void setLength(double length) {
        super.setLength(length);
        super.setWidth(length);
    }
}

类RectangleDemo是我们的软件系统中的一个组件,它有一个resize方法依赖基类Rectangle,resize方法是RectandleDemo类中的一个方法,用来实现宽度逐渐增长的效果。

public class RectangleDemo {
    
    public static void resize(Rectangle rectangle) {
        while (rectangle.getWidth() <= rectangle.getLength()) {
            rectangle.setWidth(rectangle.getWidth() + 1);
        }
    }
​
    //打印长方形的长和宽
    public static void printLengthAndWidth(Rectangle rectangle) {
        System.out.println(rectangle.getLength());
        System.out.println(rectangle.getWidth());
    }
​
    public static void main(String[] args) {
        Rectangle rectangle = new Rectangle();
        rectangle.setLength(20);
        rectangle.setWidth(10);
        resize(rectangle);
        printLengthAndWidth(rectangle);
​
        System.out.println("============");
​
        Rectangle rectangle1 = new Square();
        rectangle1.setLength(10);
        resize(rectangle1);
        printLengthAndWidth(rectangle1);
    }
}

我们运行一下这段代码就会发现,假如我们把一个普通长方形作为参数传入resize方法,就会看到长方形宽度逐渐增长的效果,当宽度大于长度,代码就会停止,这种行为的结果符合我们的预期;假如我们再把一个正方形作为参数传入resize方法后,就会看到正方形的宽度和长度都在不断增长,代码会一直运行下去,直至系统产生溢出错误。所以,普通的长方形是适合这段代码的,正方形不适合。

我们得出结论:

在resize方法中,Rectangle类型的参数是不能被Square类型的参数所代替,如果进行了替换就得不到预期结果。因此,Square类和Rectangle类之间的继承关系违反了里氏代换原则,它们之间的继承关系不成立,正方形不是长方形。

如何改进呢?此时我们需要重新设计他们之间的关系。抽象出来一个四边形接口(Quadrilateral),让Rectangle类和Square类实现Quadrilateral接口

 编码如下:

接口类:

/**
 * @author etcEriksen
 */
public interface Quadrilateral {

    //获取长
    double getLength();

    //获取宽
    double getWidth();

}

长方形类:

package com.messi.principles.demo2.after;

/**
 * @Description: 长方形类
 * @Author: etcEriksen
 * @Date: 2023/1/30
 **/
public class Rectangle implements Quadrilateral{

    private double length;
    private double width;

    public void setLength(double length) {
        this.length = length;
    }

    public void setWidth(double width) {
        this.width = width;
    }

    @Override
    public double getLength() {
        return length;
    }

    @Override
    public double getWidth() {
        return width;
    }
}

正方形类:

package com.messi.principles.demo2.after;

/**
 * @Description: 正方形类
 * @Author: etcEriksen
 * @Date: 2023/1/30
 **/
public class Square implements Quadrilateral {

    private double side;

    public double getSide() {
        return side;
    }

    public void setSide(double side) {
        this.side = side;
    }

    @Override
    public double getLength() {
        return side;
    }

    @Override
    public double getWidth() {
        return side;
    }
}

测试类:

package com.messi.principles.demo2.after;

/**
 * @Description: TODO
 * @Author: etcEriksen
 * @Date: 2023/1/30
 **/
public class RectangleDemo {

    public static void resize(Rectangle rectangle) {
        while (rectangle.getWidth() <= rectangle.getLength()) {
            rectangle.setWidth(rectangle.getWidth()+1);
        }
    }
    //打印长和宽
    public static void printLengthAndWidth(Quadrilateral quadrilateral) {
        System.out.println(quadrilateral.getLength());
        System.out.println(quadrilateral.getWidth());
    }

    public static void main(String[] args) {
        Rectangle r = new Rectangle();
        r.setLength(20);
        r.setWidth(10);
        //调用方法进行扩宽操作
        resize(r);
        printLengthAndWidth(r);
    }
}

总结:在测试类中我们可以轻易看出,对于resize方法只可以允许长方形类进行传递参数使用,正方形类是不可传递参数过去使用的。

3.3 依赖倒转原则

高层模块不应该依赖低层模块,两者都应该依赖其抽象;抽象不应该依赖细节,细节应该依赖抽象。简单的说就是要求对抽象进行编程,不要对实现进行编程,这样就降低了客户与实现模块间的耦合。

下面看一个例子来理解依赖倒转原则

【例】组装电脑

现要组装一台电脑,需要配件cpu,硬盘,内存条。只有这些配置都有了,计算机才能正常的运行。选择cpu有很多选择,如Intel,AMD等,硬盘可以选择希捷,西数等,内存条可以选择金士顿,海盗船等。

类图如下:

代码如下:

接口类:

package com.messi.principles.demo3.after;

/**
 * @Description: TODO
 * @Author: etcEriksen
 * @Date: 2023/1/30
 **/
public interface Cpu {
    //运行cpu
    public void run();
}
package com.messi.principles.demo3.after;

/**
 * @Description: TODO
 * @Author: etcEriksen
 * @Date: 2023/1/30
 **/
public interface HardDisk {

    //存储数据
    public void save(String data);

    //获取数据
    public String get();
}
package com.messi.principles.demo3.after;

/**
 * @Description: TODO
 * @Author: etcEriksen
 * @Date: 2023/1/30
 **/
public interface Memory {

    public void save();
}

希捷硬盘类(XiJieHardDisk):

public class XiJieHardDisk implements HardDisk {
​
    public void save(String data) {
        System.out.println("使用希捷硬盘存储数据" + data);
    }
​
    public String get() {
        System.out.println("使用希捷希捷硬盘取数据");
        return "数据";
    }
}

Intel处理器(IntelCpu):

public class IntelCpu implements Cpu {
​
    public void run() {
        System.out.println("使用Intel处理器");
    }
}

金士顿内存条(KingstonMemory):

public class KingstonMemory implements Memory {
​
    public void save() {
        System.out.println("使用金士顿作为内存条");
    }
}

电脑(Computer):

public class Computer {
​
    private XiJieHardDisk hardDisk;
    private IntelCpu cpu;
    private KingstonMemory memory;
​
    public IntelCpu getCpu() {
        return cpu;
    }
​
    public void setCpu(IntelCpu cpu) {
        this.cpu = cpu;
    }
​
    public KingstonMemory getMemory() {
        return memory;
    }
​
    public void setMemory(KingstonMemory memory) {
        this.memory = memory;
    }
​
    public XiJieHardDisk getHardDisk() {
        return hardDisk;
    }
​
    public void setHardDisk(XiJieHardDisk hardDisk) {
        this.hardDisk = hardDisk;
    }
​
    public void run() {
        System.out.println("计算机工作");
        cpu.run();
        memory.save();
        String data = hardDisk.get();
        System.out.println("从硬盘中获取的数据为:" + data);
    }
}

测试类(TestComputer):

测试类用来组装电脑。

public class TestComputer {
    public static void main(String[] args) {
        Computer computer = new Computer();
        computer.setHardDisk(new XiJieHardDisk());
        computer.setCpu(new IntelCpu());
        computer.setMemory(new KingstonMemory());
​
        computer.run();
    }
}

上面代码可以看到已经组装了一台电脑,但是似乎组装的电脑的cpu只能是Intel的,内存条只能是金士顿的,硬盘只能是希捷的,这对用户肯定是不友好的,用户有了机箱肯定是想按照自己的喜好,选择自己喜欢的配件。

根据依赖倒转原则进行改进:

代码我们只需要修改Computer类,让Computer类依赖抽象(各个配件的接口),而不是依赖于各个组件具体的实现类。

类图如下:

电脑(Computer):

public class Computer {
​
    private HardDisk hardDisk;
    private Cpu cpu;
    private Memory memory;
​
    public HardDisk getHardDisk() {
        return hardDisk;
    }
​
    public void setHardDisk(HardDisk hardDisk) {
        this.hardDisk = hardDisk;
    }
​
    public Cpu getCpu() {
        return cpu;
    }
​
    public void setCpu(Cpu cpu) {
        this.cpu = cpu;
    }
​
    public Memory getMemory() {
        return memory;
    }
​
    public void setMemory(Memory memory) {
        this.memory = memory;
    }
​
    public void run() {
        System.out.println("计算机工作");
    }
}

面向对象的开发很好的解决了这个问题,一般情况下抽象的变化概率很小,让用户程序依赖于抽象,实现的细节也依赖于抽象。即使实现细节不断变动,只要抽象不变,客户程序就不需要变化。这大大降低了客户程序与实现细节的耦合度。

3.4 接口隔离原则

客户端不应该被迫依赖于它不使用的方法;一个类对另一个类的依赖应该建立在最小的接口上。

下面看一个例子来理解接口隔离原则

【例】安全门案例

我们需要创建一个黑马品牌的安全门,该安全门具有防火、防水、防盗的功能。可以将防火,防水,防盗功能提取成一个接口,形成一套规范。类图如下:

 上面的设计我们发现了它存在的问题,黑马品牌的安全门具有防盗,防水,防火的功能。现在如果我们还需要再创建一个传智品牌的安全门,而该安全门只具有防盗、防水功能呢?很显然如果实现SafetyDoor接口就违背了接口隔离原则,那么我们如何进行修改呢?看如下类图:

代码如下:

AntiTheft(接口):

public interface AntiTheft {
    void antiTheft();
}

Fireproof(接口):

public interface Fireproof {
    void fireproof();
}

Waterproof(接口):

public interface Waterproof {
    void waterproof();
}

HeiMaSafetyDoor(类):

public class HeiMaSafetyDoor implements AntiTheft,Fireproof,Waterproof {
    public void antiTheft() {
        System.out.println("防盗");
    }
​
    public void fireproof() {
        System.out.println("防火");
    }
​
​
    public void waterproof() {
        System.out.println("防水");
    }
}

ItcastSafetyDoor(类):

public class ItcastSafetyDoor implements AntiTheft,Fireproof {
    public void antiTheft() {
        System.out.println("防盗");
    }
​
    public void fireproof() {
        System.out.println("防火");
    }
}

3.5 迪米特法则

迪米特法则又叫最少知识原则。

只和你的直接朋友交谈,不跟“陌生人”说话(Talk only to your immediate friends and not to strangers)。

其含义是:如果两个软件实体无须直接通信,那么就不应当发生直接的相互调用,可以通过第三方转发该调用。其目的是降低类之间的耦合度,提高模块之间的相对独立性。

迪米特法则中的“朋友”是指:当前对象本身、当前对象的成员对象、当前对象所创建的对象、当前对象的方法参数等,这些对象同当前对象存在关联、聚合或组合关系,可以直接访问这些对象的方法。

下面看一个例子来理解迪米特法则

【例】明星与经纪人的关系实例

明星由于全身心投入艺术,所以许多日常事务由经纪人负责处理,如和粉丝的见面会,和媒体公司的业务洽淡等。这里的经纪人是明星的朋友,而粉丝和媒体公司是陌生人,所以适合使用迪米特法则。

类图如下:

代码如下:

明星类(Star)

public class Star {
    private String name;
​
    public Star(String name) {
        this.name=name;
    }
​
    public String getName() {
        return name;
    }
}

粉丝类(Fans)

public class Fans {
    private String name;
​
    public Fans(String name) {
        this.name=name;
    }
​
    public String getName() {
        return name;
    }
}

媒体公司类(Company)

public class Company {
    private String name;
​
    public Company(String name) {
        this.name=name;
    }
​
    public String getName() {
        return name;
    }
}

经纪人类(Agent)

public class Agent {
    private Star star;
    private Fans fans;
    private Company company;
​
    public void setStar(Star star) {
        this.star = star;
    }
​
    public void setFans(Fans fans) {
        this.fans = fans;
    }
​
    public void setCompany(Company company) {
        this.company = company;
    }
​
    public void meeting() {
        System.out.println(fans.getName() + "与明星" + star.getName() + "见面了。");
    }
​
    public void business() {
        System.out.println(company.getName() + "与明星" + star.getName() + "洽淡业务。");
    }
}

3.6 合成复用原则

合成复用原则是指:尽量先使用组合或者聚合等关联关系来实现,其次才考虑使用继承关系来实现。

通常类的复用分为继承复用和合成复用两种。

继承复用虽然有简单和易实现的优点,但它也存在以下缺点:

  1. 继承复用破坏了类的封装性。因为继承会将父类的实现细节暴露给子类,父类对子类是透明的,所以这种复用又称为“白箱”复用。

  2. 子类与父类的耦合度高。父类的实现的任何改变都会导致子类的实现发生变化,这不利于类的扩展与维护。

  3. 它限制了复用的灵活性。从父类继承而来的实现是静态的,在编译时已经定义,所以在运行时不可能发生变化。

采用组合或聚合复用时,可以将已有对象纳入新对象中,使之成为新对象的一部分,新对象可以调用已有对象的功能,它有以下优点:

  1. 它维持了类的封装性。因为成分对象的内部细节是新对象看不见的,所以这种复用又称为“黑箱”复用。

  2. 对象间的耦合度低。可以在类的成员位置声明抽象。

  3. 复用的灵活性高。这种复用可以在运行时动态进行,新对象可以动态地引用与成分对象类型相同的对象。

下面看一个例子来理解合成复用原则

【例】汽车分类管理程序

汽车按“动力源”划分可分为汽油汽车、电动汽车等;按“颜色”划分可分为白色汽车、黑色汽车和红色汽车等。如果同时考虑这两种分类,其组合就很多。类图如下:

 从上面类图我们可以看到使用继承复用产生了很多子类,如果现在又有新的动力源或者新的颜色的话,就需要再定义新的类。我们试着将继承复用改为聚合复用看一下。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/189900.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【QT5 定时器练习-笔记-样例讲解-实现方式>>>(1)定时器事件方式和(2)定时器绑定函数】

QT5 -定时器简单应用-样例讲解-实现方式1-定时器事件方式1、前言2、实验环境3、定时器实现方式说明-以及效果3、操作步骤-&#xff08;1&#xff09;定时器事件方式&#xff08;1&#xff09;建立工程&#xff08;2&#xff09;拉控件布局&#xff08;3&#xff09;代码部分编写…

《深入浅出计算机组成原理》学习笔记 Day16

冒险和预测&#xff08;一&#xff09;1. 超长流水线的缺点2. 冒险和分支预测参考1. 超长流水线的缺点 增加流水线的深度&#xff0c;在同主频下&#xff0c;其实就是降低了 CPU 的性能。 一个 Pipeline Stage&#xff0c;就需要一个时钟周期。如果我们把任务分成 31 个阶段&…

2014年408专业算法题

文章目录0 结果1 题目2 思路附录0 结果 1 题目 2 思路 二叉树的带权路径长度&#xff08;WPL&#xff09;的计算方法有两种&#xff1a; 1&#xff0c;定义&#xff1a;WPL所有叶结点的权值Wi∗该结点深度Di求和WPL所有叶结点的权值W_i*该结点深度D_i求和WPL所有叶结点的权值…

如何管理IC研发过程产生的bug

一款芯片的研发过程中总是伴随着bug、bug和bug&#xff0c;研发线上各端的IC工程师也是全程在debug、debug和debug&#xff0c;直到最终的GDSII文件交给Founry工厂加工&#xff0c;全程都是为了保证芯片最终能够安全保质的tape-out成功。由此可见&#xff0c;bug的跟踪管理是至…

【数据结构】题解:二叉树的非递归遍历

【数据结构】题解&#xff1a;二叉树的非递归实现 文章目录【数据结构】题解&#xff1a;二叉树的非递归实现一、问题描述二、递归实现三、非递归实现3.1 前序遍历3.2 中序遍历3.3 后序遍历一、问题描述 二叉树的前序遍历&#xff0c;非递归迭代实现 &#xff0c;二叉树的前序遍…

Synology群晖小技巧之百度网盘远程下载同步

&#x1f388; 作者&#xff1a;互联网-小啊宇 &#x1f388; 简介&#xff1a; CSDN 运维领域创作者、阿里云专家博主。目前从事 Kubernetes运维相关工作&#xff0c;擅长Linux系统运维、开源监控软件维护、Kubernetes容器技术、CI/CD持续集成、自动化运维、开源软件部署维护…

[HCTF 2018]WarmUp1

http://ca039961-2ebb-4acd-8107-ece077539106.node4.buuoj.cn:81/ 按F12查看源码 根据提示访问source.php 分析源码&#xff0c;搞懂其中几个函数 mb_strpos() &#xff1a;返回要查找的字符串在要检查的字符串中首次出现的位置 mb_strpos (haystack ,needle) //haystack&…

AVS3变换系数编码:SRCC

AVS3摒弃了HEVC和AVS2中的基于CG(Coefficient Group)的变换系数编码方式&#xff0c;使用基于扫描区域的变换系数编码方法Scan Region-based Coefficient Coding(SRCC)。在基于块的预测变换混合编码框架里&#xff0c;当一个块完成预测、变换和量化后会获得相应的变换系数&…

盘点2022十大热门编程语言(上)

全球知名代码托管平台 GitHub发布的2022年GitHub Octoverse年度报告公布了全球最流行的十大编程语言&#xff0c;其中JavaScript蝉联第一&#xff0c;Python位列次席。 编程是技术革新的核心&#xff0c;对于所有的编程开发人员来说&#xff0c;对世界范围内编程语言发展和趋势…

APP UI自动化测试思路总结

pythonappium自动化测试系列就要告一段落了&#xff0c;本篇博客咱们做个小结。 首先想要说明一下&#xff0c;APP自动化测试可能很多公司不用&#xff0c;但也是大部分自动化测试工程师、高级测试工程师岗位招聘信息上要求的&#xff0c;所以为了更好的待遇&#xff0c;我们还…

算法该不该刷?如何高效刷算法?

一、算法该不该刷&#xff1f;最近有小伙伴向我咨询一个问题&#xff0c;就是算法该不该刷&#xff0c;该如何刷算法呢&#xff1f;这个问题可谓太大众化了&#xff0c;只要你去某乎、某度搜索一下相关的解答&#xff0c;会有无数种回答&#xff0c;可见这个问题困扰了多少学习…

Ruoyi-Cloud框架学习-【08 前端、后端服务打包】

后端打包部署 在ruoyi项目的bin目录下执行package.bat打包Web工程&#xff0c;生成war/jar包文件。 然后会在各个项目下生成target文件夹、包含war或jar 提示 不同模块版本会生成在ruoyi/ruoyi-xxxx模块下target文件夹 部署工程文件 1、jar部署方式 使用命令行执行&#xf…

docker学习(三):docker镜像分层原理及本地镜像推送到阿里云或私服

文章目录前言docker镜像分层加载原理docker镜像commit操作产生新镜像本地镜像发布到阿里云将本地镜像推送到私有库前言 大家好&#xff0c;这是我学习docker系列的笔记文章&#xff0c;目标是掌握docker,为后续学习K8s做准备。本文记录了docker镜像分层加载的原理&#xff0c;…

DSP_TMS320F28377D_使用定时器实现<获取代码块运算时间>的功能

前言 给大家拜个晚年&#xff0c;此博客是2023年的第一篇博客&#xff0c;希望在2023年我与各位大佬共同进步。以前在STM32上实现过相关的功能&#xff0c;链接如下&#xff1a; STM32_使用定时器实现&#xff1c;获取代码块运算时间&#xff1e;的功能_江湖上都叫我秋博的博…

发表计算机 SCI 论文有多难? - 易智编译EaseEditing

发表SCI论文的对本科生来说点难度&#xff0c;一般论文的水平是这样&#xff1a;普刊&#xff1c;核心&#xff1c;SCI。 不同的专业都可以发SCI&#xff0c;只是影响因子高低不用而已&#xff0c;有的领域分值高&#xff0c;有的偏低。 就是说不同领域SCI期刊&#xff0c;影响…

液晶12864显示图片

液晶12864简介12864是128*64点阵液晶模块的点阵数简称。基本参数1、低电源电压&#xff08;VDD:3.0&#xff5e;5.5V&#xff09;。2、显示分辨率:12864 点。3、内置汉字字库&#xff0c;提供8192 个1616 点阵汉字。4、内置128 个168 点阵字符。5、2MHZ时钟频率。6、显示方式&a…

HCIA-Datacom题库2023最新放送,能答对60%就拿下证书

HCIA的学习是网络工程师这条路的开始。如果你准备好了&#xff0c;就往下看&#xff01;HCIA认证是华为公司认证体系中的初级认证&#xff0c;是一个入门认证&#xff0c;它包含的技术很简单&#xff0c;只是一个单核心的小网络&#xff0c;距离一个合格的网络工程师还有一段距…

电子文件全程管理与信息安全保障的并行之路

这篇文章是笔者2014年发表在《保密科学技术》第6期的一篇文章&#xff0c;时隔8年温习了一遍之后感觉还是有一定的可取之处&#xff0c;时至今日依然没有明显落伍&#xff0c;所以在修改完善其中部分内容之后分享给大家。 原文 Part. 01 引言 从上世纪八九十年代开始&#xff…

Nacos目录挂载并实现持久化

目录挂在docker pull ndocker pull nacos/nacos-server:v2.0.4 acos/nacos-server:v2.0.4 docker run -d --name nacos -e JVM_XMS256m -e JVM_XMX512m -e MODEstandalone --restartalways -p 8848:8848 nacos/nacos-server:1.4.2docker run -d --name nacos -e JVM_XMS256m -e…

作为一个合格的测试工程师如何跟开发有效沟通?

测试人员每天的例行工作之一就是与开发沟通代码改动&#xff0c;并对改动进行功能回归&#xff0c;我们称之为测试范围确认。对于每个测试人员来说&#xff0c;可能都会遇到以下问题&#xff1a; 1、拿到一个代码改动后我首先做什么&#xff1f; 2、跟开发沟通时问些什么&…