240703_昇思学习打卡-Day15-K近邻算法实现红酒聚类

news2024/11/17 21:48:37

KNN(K近邻)算法实现红酒聚类

K近邻算法,是有监督学习中的分类算法,可以用于分类和回归,本篇主要讲解其在分类上的用途。

文章目录

  • KNN(K近邻)算法实现红酒聚类
    • 算法原理
    • 数据下载
    • 数据读取与处理
    • 模型构建--计算距离
    • 模型预测

算法原理

KNN算法虽然是机器学习算法,但是他不学习,他的原理是把所有的训练集都存储下来,在测试的时候把测试集放到原图里面,根据测试点和训练集的距离判定属于的类别。如下图示例,假设我们现在有两个类别,分别是A和B,用三角和圆圈(不太圆见谅)表示,我们把这两种类别都画在坐标系中。此时载入一个未知类别方框,我们的KNN算法就开始了。

110098762832b5a36dc6b017825df1d

首先我们要指定一个K值,K值就是距离值,比如我们先指定K=2,就可以在这个位置类别周围画一个圆(可以理解为半径为2),如下图:

36b42e26031f9e5e878ea7b6e1a1df2

此时我们这个圆框进去了两个A类别,根据算法原理,此时就会把这个未知类别判断为A类别。而如果我们扩大K值呢

6ac9ca29672e8c05d90f380e5101696

当我们把K值从2扩大到4时(小圆外面的大圆),可以看到,此时包进来了4个B类别值,A类别值仍然只有2个,此时就会判断为B类别。这个算法有一点划地盘的意思,画个圈,这圈里谁人多,你就跟谁走,是这意思。歪理原理就这么结束了,下面让我们看看正经的解释。

K近邻算法(K-Nearest-Neighbor, KNN)是一种用于分类和回归的非参数统计方法,最初由 Cover和Hart于1968年提出(Cover等人,1967),是机器学习最基础的算法之一。它正是基于以上思想:要确定一个样本的类别,可以计算它与所有训练样本的距离,然后找出和该样本最接近的k个样本,统计出这些样本的类别并进行投票,票数最多的那个类就是分类的结果。KNN的三个基本要素:

  • K值,一个样本的分类是由K个邻居的“多数表决”确定的。K值越小,容易受噪声影响,反之,会使类别之间的界限变得模糊。
  • 距离度量,反映了特征空间中两个样本间的相似度,距离越小,越相似。常用的有Lp距离(p=2时,即为欧式距离)、曼哈顿距离、海明距离等。
  • 分类决策规则,通常是多数表决,或者基于距离加权的多数表决(权值与距离成反比)。

预测算法(分类)的流程如下:

(1)在训练样本集中找出距离待测样本x_test最近的k个样本,并保存至集合N中;

(2)统计集合N中每一类样本的个数𝐶𝑖,𝑖=1,2,3,…,𝑐𝐶𝑖,𝑖=1,2,3,…,𝑐;

(3)最终的分类结果为argmax𝐶𝑖𝐶𝑖 (最大的对应的𝐶𝑖𝐶𝑖)那个类。

在上述实现过程中,k的取值尤为重要。它可以根据问题和数据特点来确定。在具体实现时,可以考虑样本的权重,即每个样本有不同的投票权重,这种方法称为带权重的k近邻算法,它是一种变种的k近邻算法。

数据下载

我们使用Wine数据集进行展示,Wine数据集的官网:Wine Data Set,这个数据集是对同一地区三个不同品种的葡萄酒进行化学分析后记录的结果。数据集分析了三种葡萄酒中每种所含13种成分的量。这些13种属性是

  1. Alcohol,酒精
  2. Malic acid,苹果酸
  3. Ash,灰
  4. Alcalinity of ash,灰的碱度
  5. Magnesium,镁
  6. Total phenols,总酚
  7. Flavanoids,类黄酮
  8. Nonflavanoid phenols,非黄酮酚
  9. Proanthocyanins,原花青素
  10. Color intensity,色彩强度
  11. Hue,色调
  12. OD280/OD315 of diluted wines,稀释酒的OD280/OD315
  13. Proline,脯氨酸

可以采用两种下载方式:

  • 方式一,从Wine数据集官网下载wine.data文件。
  • 方式二,从华为云OBS中下载wine.data文件。

此时我们默认已经安装了Mindspore环境,采用从华为云OBS中下载数据集

from download import download

# 下载红酒数据集
url = "https://ascend-professional-construction-dataset.obs.cn-north-4.myhuaweicloud.com:443/MachineLearning/wine.zip"  
path = download(url, "./", kind="zip", replace=True)

数据读取与处理

数据下载下来了,我们就进行读取和预处理呗。

%matplotlib inline
import os
import csv
import numpy as np
import matplotlib.pyplot as plt

import mindspore as ms
from mindspore import nn, ops

ms.set_context(device_target="CPU")
with open('wine.data') as csv_file:
    data = list(csv.reader(csv_file, delimiter=','))
print(data[56:62]+data[130:133])

执行完这几行代码后我们会打印出来部分数据进行查看,比如我这里打印出这样的数据

image-20240703222223714

此时最开始的每个list最开始的第一个数都是1或2或3,这就是葡萄酒的三种类别,后面紧跟着的13个参数就是他的13种化学成分。

取三类样本(共178条),将数据集的13个属性作为自变量X,将数据集的3个类别作为因变量Y。此时X和Y的值可以自行打印查看

X = np.array([[float(x) for x in s[1:]] for s in data[:178]], np.float32)
Y = np.array([s[0] for s in data[:178]], np.int32)

取样本的某两个属性进行2维可视化,可以看到在某两个属性上样本的分布情况以及可分性。

attrs = ['Alcohol', 'Malic acid', 'Ash', 'Alcalinity of ash', 'Magnesium', 'Total phenols',
         'Flavanoids', 'Nonflavanoid phenols', 'Proanthocyanins', 'Color intensity', 'Hue',
         'OD280/OD315 of diluted wines', 'Proline']
plt.figure(figsize=(10, 8))
for i in range(0, 4):
    plt.subplot(2, 2, i+1)
    # 选择的化学成分由循环轮数i决定
    a1, a2 = 2 * i, 2 * i + 1
    # 选择前59个类别为1的数据,化学成分选a1和a2类
    plt.scatter(X[:59, a1], X[:59, a2], label='1')
    plt.scatter(X[59:130, a1], X[59:130, a2], label='2')
    plt.scatter(X[130:, a1], X[130:, a2], label='3')
    plt.xlabel(attrs[a1])
    plt.ylabel(attrs[a2])
    plt.legend()
plt.show()

这里执行完了就可以看到四张打印出来的图,就体现了每一类葡萄酒其中两种化学成分的关系

将数据集按128:50划分为训练集(已知类别样本)和验证集(待验证样本):

train_idx = np.random.choice(178, 128, replace=False)
test_idx = np.array(list(set(range(178)) - set(train_idx)))
X_train, Y_train = X[train_idx], Y[train_idx]
X_test, Y_test = X[test_idx], Y[test_idx]

模型构建–计算距离

利用MindSpore提供的tile, square, ReduceSum, sqrt, TopK等算子,通过矩阵运算的方式同时计算输入样本x和已明确分类的其他样本X_train的距离,并计算出top k近邻

class KnnNet(nn.Cell):
    def __init__(self, k):
        super(KnnNet, self).__init__()
        self.k = k

    def construct(self, x, X_train):
        #平铺输入x以匹配X_train中的样本数
        x_tile = ops.tile(x, (128, 1))
        square_diff = ops.square(x_tile - X_train)
        square_dist = ops.sum(square_diff, 1)
        dist = ops.sqrt(square_dist)
        #-dist表示值越大,样本就越接近
        values, indices = ops.topk(-dist, self.k)
        return indices

def knn(knn_net, x, X_train, Y_train):
    x, X_train = ms.Tensor(x), ms.Tensor(X_train)
    indices = knn_net(x, X_train)
    topk_cls = [0]*len(indices.asnumpy())
    for idx in indices.asnumpy():
        topk_cls[Y_train[idx]] += 1
    cls = np.argmax(topk_cls)
    return cls

模型预测

在验证集上验证KNN算法的有效性,取𝑘=5𝑘=5,验证精度接近80%,说明KNN算法在该3分类任务上有效,能根据酒的13种属性判断出酒的品种。

acc = 0
knn_net = KnnNet(5)
for x, y in zip(X_test, Y_test):
    pred = knn(knn_net, x, X_train, Y_train)
    acc += (pred == y)
    print('label: %d, prediction: %s' % (y, pred))
print('Validation accuracy is %f' % (acc/len(Y_test)))

打卡图片:

image-20240703215517332

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1891172.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

AIGC到底如何改变创意设计?

在当今数字化时代,AIGC(生成式人工智能)技术的崛起对创意设计领域产生了深远的影响。AIGC不仅为设计师提供了新的工具和方法,还改变了传统的设计流程和思维方式。 传统的设计过程中,设计师需要耗费大量时间在绘图、修…

利用GPT 将 matlab 内置 bwlookup 函数转C

最近业务需要将 matlab中bwlookup 的转C 这个函数没有现成的m文件参考,内置已经打成库了,所以没有参考源代码 但是它的解释还是很清楚的,可以根据这个来写 Nonlinear filtering using lookup tables - MATLAB bwlookup - MathWorks 中国 A…

甘肃黄米粽子:香甜软糯的塞上美食

甘肃黄米粽子是甘肃地区具有特色的传统美食。黄米粽子选用优质的黄米作为主要原料,黄米相较于糯米,有着独特的谷物香气和口感。在制作过程中,将黄米浸泡一段时间,使其充分吸收水分,变得饱满。馅料方面,通常…

Vue 爬坑

都是基于最新的Vue3版本 "vue": "^3.4.29" 1 vue组建样式设置 <script setup lang"ts"> import HelloWorld from ./components/HelloWorld.vue </script><template><div><a href"https://vitejs.dev" tar…

鸿翼打造企业级AI Agent智能体平台,构建AI +ECM全业务场景

在数字化时代的浪潮中&#xff0c;人工智能技术正以前所未有的速度改变着世界。正如比尔盖茨预言&#xff0c;AI Agent将是人工智能的未来。在这个预言逐渐成为现实的当下&#xff0c;大模型驱动的智能体正在成为推动企业革新的核心动力。 在企业环境中&#xff0c;大语言模型的…

DEX: Scalable Range Indexing on Disaggregated Memory——论文泛读

arXiv Paper 论文阅读笔记整理 问题 内存优化索引[2&#xff0c;3&#xff0c;18&#xff0c;27&#xff0c;42]对于加速OLTP至关重要&#xff0c;但随着数据大小&#xff08;以及索引大小&#xff09;的增长&#xff0c;对内存容量的需求可能会超过单个服务器所能提供的容量…

华为手机改变休眠时间 不让手机动不动黑屏

在手机中找到设置 并打开 在里面找到显示与亮度 并点开 找到并点击休眠操作项 然后就会弹出 多久进入休眠 可以调久一点

机器学习基础概念

1.机器学习定义 2.机器学习工作流程 &#xff08;1&#xff09;数据集 ①一行数据&#xff1a;一个样本 ②一列数据&#xff1a;一个特征 ③目标值&#xff08;标签值&#xff09;&#xff1a;有些数据集有目标值&#xff0c;有些数据集没有。因此数据类型由特征值目标值构成或…

vmware虚拟机增加磁盘容量

概述 当初始分配给虚拟机的磁盘空间不够时&#xff0c;需要从外部的主系统增加配给。 具体操作分为两步&#xff1a;一&#xff1a;通过虚拟机界面添加分配的磁盘配给&#xff1b;二&#xff1a;将新分配的配给给使用起来。 操作 添加磁盘配给 在虚拟机内部添加新分配的配给…

Linux下QT程序启动失败问题排查方法

文章目录 0.问题背景1.程序启动失败常见原因2.排查依赖库问题2.1 依赖库缺失2.2 依赖库加载路径错误2.3 依赖库版本不匹配2.4 QT插件库缺失2.4.1 QT插件库缺失2.4.2 插件库自身的依赖库缺失 2.5 系统基础C库不匹配 3.资源问题3.1 缺少翻译文件3.2 缺少依赖的资源文件3.3 缺少依…

数据库安装

1.选择最下面自定义安装 2.选择x64 3.next 4.完成后next 5.next 6.选择如图&#xff0c;next 7.如图 8.输入密码 9.如图 10.如图 11.安装 12.完成 13.控制面板选择系统和安全 14.选择系统 15.高级系统设置 16.环境变量 17.双击打开path 18.新建 19.输入MySQLbin文件夹路径 20.管…

年互动量破亿,小红书流量新风口趋势研究

当今时代&#xff0c;一个人生活已经成为越来越常见的状态。千瓜数据显示&#xff0c;近一年小红书有关“一人生活”的种草笔记数超百万&#xff0c;预估互动量达亿级&#xff0c;“一人”市场大有可为。 本期&#xff0c;千瓜将探索“一人生活”的新变化&#xff0c;深入分析人…

Modbus RTU协议简介即CRC算法实现

目录 1 Modbus 介绍2 Modbus RTU协议传输方式2.1 地址码2.2 功能码2.3 数据码2.4 校验码 3 CRC算法实现2.1 代码3.2 运行结果 1 Modbus 介绍 Modbus是一种串行通信协议&#xff0c;是Modicon公司&#xff08;现在的施耐德电气 Schneider Electric&#xff09;于1979年为使用可编…

谷粒商城-个人笔记(集群部署篇一)

前言 ​学习视频&#xff1a;​Java项目《谷粒商城》架构师级Java项目实战&#xff0c;对标阿里P6-P7&#xff0c;全网最强​学习文档&#xff1a; 谷粒商城-个人笔记(基础篇一)谷粒商城-个人笔记(基础篇二)谷粒商城-个人笔记(基础篇三)谷粒商城-个人笔记(高级篇一)谷粒商城-个…

每日一题——力扣144. 二叉树的前序遍历(举一反三+思想解读+逐步优化)五千字好文

一个认为一切根源都是“自己不够强”的INTJ 个人主页&#xff1a;用哲学编程-CSDN博客专栏&#xff1a;每日一题——举一反三Python编程学习Python内置函数 Python-3.12.0文档解读 目录 我的写法&#xff1a; 代码结构 时间复杂度 空间复杂度 总结 我要更强 代码说明 …

mysql 忘记 root 密码的解决办法(针对不同 mysql 版本)

文章目录 1.前提说明1.1 cmd 窗口打开方式1.2 mysql 服务相关命令知识补充1.3 三个 mysql 版本说明1.4 运行时可能发生的报错问题&#x1f340; 跳过密码授权命令报错&#x1f340; 修改密码时报错&#x1f340; ERROR 2003 (HY000): Cant connect to MySQL server on localhos…

安卓稳定性之crash详解

目录 前言一、Crash 的基本原理二、Crash 分析思路三、实例分析四、预防措施五、参考链接 前言 在开发和测试 Android 应用程序时&#xff0c;遇到应用程序崩溃是很常见的情况。 Android 崩溃指的是应用程序因为异常或错误而无法正常执行&#xff0c;并且导致应用强制关闭。 一…

RabbitMQ 进程内流控(Flow Control) 源码解析

1. 概述 1.1 为什么要流控&#xff1f; 流控主要是为了防止生产者生产消息速度过快&#xff0c;超过 Broker 可以处理的速度。这时需要暂时限制生产者的生产速度&#xff0c;让 Broker 的处理能够跟上生产速度。 Erlang进程之间不共享内存&#xff0c;每个进程都有自己的进程邮…

什么是眼球凹渲染?如何在Varjo Base中设置眼球追踪与凹渲染功能

当谈到Varjo耳机时&#xff0c;它们总是与超高分辨率显示器和有凹渲染联系在一起&#xff0c;从而能够高效地渲染到高像素的显示器上。 本篇博文的主题是分享一些可用于OpenXR应用程序的新设置&#xff0c;但在此之前&#xff0c;让我们先了解关于有凹渲染的一些背景。有凹渲染…

【计算机毕业设计】基于Springboot的B2B平台医疗病历交互系统【源码+lw+部署文档】

包含论文源码的压缩包较大&#xff0c;请私信或者加我的绿色小软件获取 免责声明&#xff1a;资料部分来源于合法的互联网渠道收集和整理&#xff0c;部分自己学习积累成果&#xff0c;供大家学习参考与交流。收取的费用仅用于收集和整理资料耗费时间的酬劳。 本人尊重原创作者…