Hadoop权威指南-读书笔记-01-初识Hadoop

news2024/11/18 1:51:18

Hadoop权威指南-读书笔记

记录一下读这本书的时候觉得有意思或者重要的点~

在这里插入图片描述

第一章—初识Hadoop

在这里插入图片描述
Tips: 这个引例很有哲理嘻嘻😄,道出了分布式的灵魂。


1.1 数据!数据!

这一小节主要介绍了进入大数据时代,面临数据量飙升的问题,我们该如何管理好自己的数据,或者说如何利用好规模如此庞大的数据。

在这里插入图片描述

博主摘录了一些原文:

  • 有句话说得好: “大数据胜于好算法。” 意思是说对于某些应用(譬如根据以往的偏好来推荐电影和音乐),不论算法有多牛,基于小数据的推荐效果往往都不如基于大量可用数据的一般算法的推荐效果。(More Data usually beats better algorithms

  • 现在,我们已经有了大量数据,这是个好消息。但不幸的是,我们必须想方设法好好地存储和分析这些数据。

More Data usually beats better algorithms,这个观点博主认为很有意思🤣


1.2 数据的存储与分析

这里博主就直接记录一下原文比较值得思考的片段了哈 ~

  • 我们遇到的问题很简单:在硬盘存储容量多年来不断提升的同时,访问速度(硬盘数据读取速度)却没有与时俱进。

Tips:这里并非说多年来硬盘的读取速度没有提升,而是硬盘的读取速度的提升相对于硬盘容量的提升还有差距。

这里文章有一个小例子大家可以看一下:1990年,一个普通硬盘可以存储1370MB数据,传输速度为4.4MB/S,因此只需要5分钟就可以读完整个硬盘中的数据。20年过去了,1TB的硬盘成为主流,但其数据传输速度约为100MB/,读完整个硬盘中的数据至少得花2.5个小时。

  • 一个很简单的减少读取时间的办法是同时从多个硬盘上读数据。试想,如果我们有100个硬盘,每个硬盘存储1%的数据,并行读取,那么不到两分钟就可以读完所有数据。
    Tips:分布式的思想初见雏形

  • 仅使用硬盘容量的1%似乎很浪费。但是我们可以存储100个数据集,每个数据集1TB,并实现共享硬盘的读取。可以想象,用户肯定很乐于通过硬盘共享来缩短数据分析时间;并且,从统计角度来看,用户的分析工作都是在不同时间点进行的,所以彼此之间的干扰并不太大。

  • 虽然如此,但要对多个硬盘中的数据并行进行读/写数据,还有更多问题要解决。

  • 第一个需要解决的是硬件故障问题。一旦开始使用多个硬件,其中个别硬件就很有可能发生故障。为了避免数据丢失,最常见的做法是复制(replication):系统保存数据的复本(replica),一旦有系统发生故障,就可以使用另外保存的复本。

  • 第二个问题是大多数分析任务需要以某种方式结合大部分数据来共同完成分析,即从一个硬盘读取的数据可能需要与从另外99个硬盘中读取的数据结合使用。

  • 各种分布式系统允许结合不同来源的数据进行分析,但保证其正确性是一个非常大的挑战。MapReduce提出一个编程模型,该模型抽象出这些硬盘读/写问题并将其转换为对一个数据集(由键-值对组成)的计算。


1.3 查询所有的数据

  • MapReduce看似采用了一种蛮力方法。每个查询需要处理整个数据集或至少一个数据集的绝大部分。但反过来想,这也正是它的能力。
  • MapReduce是一个批量查询处理器,能够在合理的时间范围内处理针对整个数据集的动态查询。
  • 它改变了我们对数据的传统看法,解放了以前只是保存在磁带和硬盘上的数据。
  • 它让我们有机会对数据进行创新。
  • 以前需要很长时间处理才能获得结果的问题,到现在变得顷刻之间就迎刃而解,同时还可以引发新的问题和新的见解。

这里文中提到了一个运用MR处理数据的例子:

  • Rackspace公司的邮件部门Mailtrust就用Hadoop来处理邮件日志。
  • 他们写了一条特别的查询用于帮助找出用户的地理分布。
  • 他们是这么描述的:“这些数据非常有用,我们每月运行一次MapReduce任务来帮助我们决定扩容时将新的邮件服务器放在哪些Rackspace数据中心。”
  • 通过整合好几百GB的数据,用工具来分析这些数据,Rackspace的工程师能够对以往没有注意到的数据有所理解,甚至还运用这些信息来改善现有的服务。

Tips:挖掘海量数据的信息并服务于业务,使得业务更好的发展。


1.4 不仅仅是批处理

  • 从MapReduce的所有长处来看,它基本上是一个批处理系统,并不适合交互式分析。
  • 你不可能执行一条查询并在几秒内或更短的时间内得到结果。
  • 典型情况下执行查询需要几分钟或更多时间。因此,MapReduce更适合那种没有用户在现场等待查询结果的离线使用场景。
  • 然而,从最初的原型出现以来,Hadoop的发展已经超越了批处理本身。
  • 实际上,名词“Hadoop”有时被用于指代一个更大的、多个项目组成的生态系统,而不仅仅是HDFS和MapReduce。

在这里插入图片描述

  • 这些项目都属于分布式计算和大规模数据处理范畴。这些项目中有许多都是由Apache软件基金会管理,该基金会为开源软件项目社区提供支持,其中包括最初的HTTPserver项目(基金会的名称也来源于这个项目)。

  • 第一个提供在线访问的组件是HBase,一种使用HDFS做底层存储的键值存储模型。
  • HBase不仅提供对单行的在线读/写访问,还提供对数据块读/写的批操作。
  • Hadoop2中YARN(Yet Another Resource Negotiator)的出现意味着 Hadoop 有了新处理模型。
  • YARN是一个集群资源管理系统,允许任何一个分布式程序(不仅仅是MapReduce)基于 Hadoop 集群的数据而运行。

在这里插入图片描述

划重点:不只有MR可以使用Yarn,任何一个分布式程序都可。


1.5 相较于其他系统的优势

1.5.1 RDBMS

  • 为什么不能用配有大量硬盘的数据库来进行大规模数据分析?我们为什么需要Hadoop?

  • 这两个问题的答案来自于计算机硬盘的另一个发展趋势:寻址时间的提升远远不敌于传输速率的提升。

  • 寻址是将磁头移动到特定硬盘位置进行读/写操作的过程它是导致硬盘操作延迟的主要原因,而传输速率取决于硬盘的带宽。

  • 如果数据访问模式中包含大量的硬盘寻址,那么读取大量数据集就必然会花更长的时间(相较于流数据读取模式,流读取主要取决于传输速率)。

  • 另一方面,如果数据库系统只更新一小部分记录,那么传统的B树(关系型数据库中使用的一种数据结构,受限于寻址的速率)就更有优势。

  • 但数据库系统如果有大量数据更新时,B树的效率就明显落后于MapReduce,因为需要使用“排序/合并”(sort/merge)来重建数据库。

在这里插入图片描述

  • 在许多情况下,可以将MapReduce视为关系型数据库管理系统的补充。
  • MapReduce比较适合解决需要以批处理方式分析整个数据集的问题,尤其是一些特定目的的分析。
  • RDBMS适用于索引后数据集的点查询(point query)和更新,建立索引的数据库系统能够提供对小规模数据的低延迟数据检索和快速更新。
  • MapReduce适合一次写入、多次读取数据的应用,关系型数据库则更适合持续更新的数据集。

  • Hadoop和关系型数据库的另一个区别在于它们所操作的数据集的结构化程度。
  • 结构化数据(structured data)是具有既定格式的实体化数据,如XML 文档或满足特定预定义格式的数据库表。这是RDBMS包括的内容。
  • 另一方面,半结构化数据(semi-structured data)比较松散,虽然可能有格式,但经常被忽略,所以它只能作为对数据结构的一般性指导。例如电子表格,它在结构上是由单元格组成的网格,但是每个单元格内可以保存任何形式的数据。
  • 非结构化数据(unstructured data没有什么特别的内部结构,例如纯文本或图像数据。
  • Hadoop对非结构化或半结构化数据非常有效,因为它是在处理数据时才对数据进行解释(即所谓的“读时模式”)。这种模式在提供灵活性的同时避免了RDBMS数据加载阶段带来的高开销,因为在Hadoop中仅仅是一个文件拷贝操作。
  • 关系型数据往往是规范的(normalized),以保持其数据的完整性且不含几余。规范给Hadoop处理带来了问题,因为它使记录读取成为非本地操作,而Hadoop的核心假设之一偏偏就是可以进行(高速的)流读/写操作。

  • MapReduce 以及Hadoop中其他的处理模型是可以随着数据规模线性伸缩的。
  • 对数据分区后,函数原语(如map和reduce)能够在各个分区上并行工作。
  • 这意味着,如果输入的数据量是原来的两倍,那么作业的运行时间也需要两倍。但如果集群规模扩展为原来的两倍,那么作业的运行速度却仍然与原来一样快。SOL查询一般不具备该特性。

1.5.2 网格计算

  • 高性能计算(High Performance Computing,HPC)和网格计算(Grid Computing)组织多年以来一直在研究大规模数据处理,主要使用类似于消息传递接口(MessagePassing InterfaceMPI)的API。

  • 从广义上讲,高性能计算采用的方法是将作业分散到集群的各台机器上,这些机器访问存储区域网络(SAN)所组成的共享文件系统。

  • 这比较适用于计算密集型的作业,但如果节点需要访问的数据量更庞大(高达几百GB,Hadoop开始施展它的魔法),很多计算节点就会因为网络带宽的瓶颈问题而不得不闲下来等数据。

  • Hadoop尽量在计算节点上存储数据,以实现数据的本地快速访问。"数据本地化(data locality)特性是Hadoop数据处理的核心,并因此而获得良好的性能。

Tips:1998年图灵奖得主JimGray在2003年3月发表的“Distributed ComputingEconomics”(分布式计算经济学)一文中,率先提出这个结论:数据处理应该在离数据本身比较近的地方进行,因为这样有利于降低成本,尤其是网络带宽消费所造成的成本。

  • 意识到网络带宽是数据中心环境最珍贵的资源(到处复制数据很容易耗尽网络带宽)之后Hadoop通过显式网络拓扑结构来保留网络带宽。注意,这种排列方式并没有降低Hadoop对计算密集型数据进行分析的能力。

  • 虽然MPI赋予程序员很大的控制权,但需要程序员显式处理数据流机制,包括用C语言构造底层的功能模块(例如套接字)和高层的数据分析算法。而Hadoop则在更高层次上执行任务,即程序员仅从数据模型(如MapReduce的键-值对)的角度考虑任务的执行,与此同时,数据流仍然是隐性的。
  • 在大规模分布式计算环境下,协调各个进程的执行是一个很大的挑战。最困难的是合理处理系统的部分失效问题(在不知道一个远程进程是否挂了的情况下)同时还需要继续完成整个计算。
  • 有了MapReduce这样的分布式处理框架,程序员不必操心系统失效的问题,因为框架能够检测到失败的任务并重新在正常的机器上执行。
  • 正因为采用的是无共享(shared-nothing)框架,MapReduce才能够呈现出这种特性,这意味着各个任务之间是彼此独立的。
  • 因此,从程序员的角度来看,任务的执行顺序无关紧要。相比之下,MPI程序必须显式管理自己的检查点和恢复机制,虽然赋予程序员的控制权加大了,但编程的难度也增加了。

1.5.3 志愿计算

  • 志愿计算项目将问题分成很多块,每一块称为一个工作单元(workunit),发到世界各地的计算机上进行分析。
  • 例如,SETI@home的工作单元是0.35MB无线电望远镜数据,要对这等大小的数据量进行分析,一台普通计算机需要几个小时或几天时间才能完成。完成分析后,结果发送回服务器,客户端随后再获得另一个工作单元。为防止欺骗,每个工作单元要发送到3台不同的机器上执行,而且收到的结果中至少有两个相同才会被接受。
  • 从表面上看,SETI@home与MapReduce好像差不多(将问题分解为独立的小块然后并行进行计算),但事实上还是有很多明显的差异。SETI@home问题是CPU高度密集的,比较适合在全球成千上万台计算机上运行。因为计算所花的时间远远超过工作单元数据的传输时间。也就是说,志愿者贡献的是PU周期,而不是网络带宽。
  • MapReduce 有三大设计目标:
    • (1)为只需要短短几分钟或几个小时就可以完成的作业提供服务;
    • (2)运行于同一个内部有高速网络连接的数据中心内;
    • (3)数据中心内的计算机都是可靠的、专门的硬件。
  • 相比之下,SETI@home则是在接入互联网的不可信的计算机上长时间运行,这些计算机的网络带宽不同,对数据本地化也没有要求。

1.6 Apache Hadoop发展简史

  • Hadoop 是 Apache Lucene 创始人道格·卡丁(Doug Cutting)创建的,Lucene 是个应用广泛的文本搜索系统库。
  • Hadoop起源于开源网络搜索引擎Apache Nutch后者本身也是Lucene项目的一部分。

在这里插入图片描述

  • Nutch项目开始于2002年,一个可以运行的网页爬取工具和搜索引擎系统很快面世。
  • 但后来,它的创造者认为这一架构的灵活性不够,不足以解决数十亿网页的搜索问题。

划重点:

  • 一篇发表于2003年的论文为此提供了帮助,文中描述的是谷歌产品架构,该架构称为“谷歌分布式文件系统”(GFS)。"GFS或类似的架构可以解决他们在网页爬取和索引过程中产生的超大文件的存储需求。
  • 特别关键的是,GFS能够节省系统管理(如管理存储节点)所花的大量时间。
  • 在2004年,Nutch的开发者开始着手做开源版本的实现,即Nutch分布式文件系统(NDFS)。
  • 2004年,谷歌发表论文向全世界介绍他们的MapReduce系统。
  • 2005年初,Nutch的开发人员在Nutch上实现了一个MapReduce 系统,到年中,Nutch的所有主要算法均完成移植,用MapReduce和NDFS来运行。
  • Nutch的NDFS和MapReduce实现不只适用于搜索领域。
  • 在2006年2月,开发人员将NDFS和MapReduce移出utch形成ucene的个子项目,命名为Hadoop。
  • 大约在同一时间,DougCutting加入雅虎,雅虎为此组织了专门的团队和资源,将Hadoop发展成能够以Web网络规模运行的系统(参见随后的补充材料)。
  • 在2008年2月,雅虎宣布,雅虎搜索引警使用的索引是在一个拥有1万个内核的 Hadoop 集群上构建的。
  • 2008年1月,Hadoop已成为Apache的顶级项目,证明了它的成功、多样化和生命力。

仅供学习使用~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1884321.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

使用简鹿音频格式转换器轻松将MP3转换为WAV音频

在音频处理领域,不同的格式有其特定的应用场景。有时,我们可能需要将MP3格式的音频转换为WAV格式,以满足特定的播放或编辑需求。简鹿音频格式转换器就是一款能够帮助我们轻松实现这一转换目标的工具。 为什么选择 WAV 格式? WAV …

CentOS中使用SSH远程登录

CentOS中使用SSH远程登录 准备工作SSH概述SSH服务的安装与启动建立SSH连接SSH配置文件修改SSH默认端口SSH文件传输 准备工作 两台安装CentOS系统的虚拟机 客户机(192.168.239.128) 服务器(192.168.239.129) SSH概述 Secure S…

【RabbitMQ实战】Springboot 整合RabbitMQ组件,多种编码示例,带你实践 看完这一篇就够了

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、对RabbitMQ管理界面深入了解1、在这个界面里面我们可以做些什么? 二、编码练习(1)使用direct exchange(直连型交换机)&a…

【深圳大学算法设计与分析】 实验六 最大流应用问题 FF -> EK -> Dinic

目录 一、实验目的: 二、内容:棒球赛问题 三、实验要求 四、提交要求 ———————— 问题分析解释: ———————— 算法简解: Ford–Fulkerson 增广 Edmonds–Karp 算法 Dinic算法 Dinic和EK的区别: …

DDPM(Denoising Diffusion Probabilistic Models)

DDPM(Denoising Diffusion Probabilistic Models) 笔记来源: 1.Denoising Diffusion Probabilistic Models 2.大白话AI | 图像生成模型DDPM | 扩散模型 | 生成模型 | 概率扩散去噪生成模型 3.pytorch-stable-diffusion 扩散模型正向过程&am…

Kafka-服务端-网络层-源码流程

整体架构如下所示: responseQueue不在RequestChannel中,在Processor中,每个Processor内部有一个responseQueue 客户端发送的请求被Acceptor转发给Processor处理处理器将请求放到RequestChannel的requestQueue中KafkaRequestHandler取出reque…

易校网校园综合跑腿小程序源码修复运营版

简介: 易校网校园综合跑腿小程序源码修复运营版,带服务端客户端前端文档说明。 源码安装方法: 需要准备小程序服务号 服务器 备案域名 校园网跑腿小程序源码需要准备 1.小程序 2.服务器(推荐配置2h4g3m) 3.域名…

安卓实现微信聊天气泡

一搜没一个能用的&#xff0c;我来&#xff1a; 布局文件&#xff1a; <?xml version"1.0" encoding"utf-8"?> <androidx.constraintlayout.widget.ConstraintLayout xmlns:android"http://schemas.android.com/apk/res/android"xml…

第十二章 路由器静态路由配置

实验目标 掌握静态路由的配置方法和技巧&#xff1b; 掌握通过静态路由方式实现网络的连通性&#xff1b; 熟悉广域网线缆的链接方式&#xff1b; 实验背景 学校有新旧两个校区&#xff0c; 每个校区是一个独立的局域网&#xff0c; 为了使新旧校区能够正常相互…

CTFHUB-SSRF-上传文件

通过file协议访问flag.php文件内容 ?urlfile:///var/www/html/flag.php 右键查看页面源代码&#xff0c;发现需要从内部上传一个文件这样才能正常获取到flag ?urlhttp://127.0.0.1/flag.php 发现无提交按钮&#xff0c;构造一个 <input type"submit" name&qu…

HarmonyOS开发探索:使用Snapshot Insight分析ArkTS内存问题

识别内存问题 当怀疑应用存在内存问题的时候&#xff0c;首先使用DevEco Profiler的Allocation Insight来度量内存在问题场景下的大小变化以及整体趋势&#xff0c;初步定界问题出现的位置&#xff08;Native Heap/ArkTS Heap/dev等&#xff09;。 在初步识别内存问题出现的位置…

阿里云物联网应用层开发:第二部分,云产品流转

文章目录 哔哩哔哩视频教程1、云产品流转概述2、我们需要创建多少个云产品流转&#xff1f;3、阿里云物联网平台产品云流转实现3-1 创建数据源3-2 创建数据目的3-2 创建解析器,并关联数据、编写脚本 哔哩哔哩视频教程 【阿里云物联网综合开发&#xff0c;STM32ESP8266微信小程…

2024年道路运输安全员(企业管理人员)备考题库资料。

46.危险货物道路运输随车携带的单据&#xff0c;下列选项不属于的是&#xff08;&#xff09;。 A.道路运输危险货物安全卡 B.运单或者电子运单 C.道路危险货物运输从业资格证 D.车辆检测报告 答案&#xff1a;D 47.危险货物运输驾驶人员在24小时内实际驾驶车辆时间累计不…

opengl箱子的显示

VS环境配置&#xff1a; /JMC /ifcOutput "Debug\" /GS /analyze- /W3 /Zc:wchar_t /I"D:\Template\glfwtemplate\glfwtemplate\assimp" /I"D:\Template\glfwtemplate\glfwtemplate\glm" /I"D:\Template\glfwtemplate\glfwtemplate\LearnOp…

接口测试流程及测试点!

一、什么时候开展接口测试 1.项目处于开发阶段&#xff0c;前后端联调接口是否请求的通&#xff1f;&#xff08;对应数据库增删改查&#xff09;--开发自测 2.有接口需求文档&#xff0c;开发已完成联调&#xff08;可以转测&#xff09;&#xff0c;功能测试展开之前 3.专…

ctfshow-web入门-命令执行(web75-web77)

目录 1、web75 2、web76 3、web77 1、web75 使用 glob 协议绕过 open_basedir&#xff0c;读取根目录下的文件&#xff0c;payload&#xff1a; c?><?php $anew DirectoryIterator("glob:///*"); foreach($a as $f) {echo($f->__toString(). ); } ex…

如何用大模型RAG做医疗问答系统

代码参考 https://github.com/honeyandme/RAGQnASystemhttps://github.com/LongxingTan/open-retrievals TLDR if 疾病症状 in entities and 疾病 not in entities:sql_q "match (a:疾病)-[r:疾病的症状]->(b:疾病症状 {名称:%s}) return a.名称" % (entitie…

Cosine 余弦相似度并行计算的数学原理与Python实现

背景 Cosine 我在LLM与RAG系列课程已经讲了很多次了&#xff0c;这里不在熬述&#xff0c;它在LLM分析中&#xff0c;尤其是在语义相似度的计算中至关重要&#xff0c;在dot attention机制中&#xff0c;也会看到他的身影。这里讲的是纯数学上的运算与python是如何运用相关库进…

鸿蒙开发Ability Kit(程序访问控制):【向用户申请单次授权】

申请使用受限权限 受限开放的权限通常是不允许三方应用申请的。当应用在申请权限来访问必要的资源时&#xff0c;发现部分权限的等级比应用APL等级高&#xff0c;开发者可以选择通过ACL方式来解决等级不匹配的问题&#xff0c;从而使用受限权限。 举例说明&#xff0c;如果应…

代码随想录算法训练营第55天(py)| 单调栈 | 42. 接雨水*、84.柱状图中最大的矩形

42. 接雨水* 力扣链接 给定 n 个非负整数表示每个宽度为 1 的柱子的高度图&#xff0c;计算按此排列的柱子&#xff0c;下雨之后能接多少雨水。 思路1 暴力 按列来计算。每一列雨水的高度&#xff0c;取决于&#xff0c;该列 左侧最高的柱子和右侧最高的柱子中&#xff0c;…