sheng的学习笔记-AI-聚类(Clustering)

news2025/1/9 9:42:58

 ai目录  sheng的学习笔记-AI目录-CSDN博客

基础知识

什么是聚类

在“无监督学习”(unsupervised learning)中,训练样本的标记信息是未知的,目标是通过对无标记训练样本的学习来揭示数据的内在性质及规律,为进一步的数据分析提供基础。此类学习任务中研究最多、应用最广的是“聚类”(clustering)。

对聚类算法而言,样本簇亦称“类”。

聚类试图将数据集中的样本划分为若干个通常是不相交的子集,每个子集称为一个“簇”(cluster)。通过这样的划分,每个簇可能对应于一些潜在的概念(类别),如“浅色瓜”“深色瓜”,“有籽瓜”“无籽瓜”,甚至“本地瓜”“外地瓜”等;需说明的是,这些概念对聚类算法而言事先是未知的,聚类过程仅能自动形成簇结构,簇所对应的概念语义需由使用者来把握和命名。

聚类任务中也可使用有标记训练样本,但样本的类标记与聚类产生的簇有所不同

聚类的应用场景

在一些商业应用中需对新用户的类型进行判别,但定义“用户类型”对商家来说却可能不太容易,此时往往可先对用户数据进行聚类,根据聚类结果将每个簇定义为一个类,然后再基于这些类训练分类模型,用于判别新用户的类型

性能度量

  1. 聚类的性能度量也称作聚类的有效性指标validity index 。

  2. 直观上看,希望同一簇的样本尽可能彼此相似,不同簇的样本之间尽可能不同。即:簇内相似度intra-cluster similarity高,且簇间相似度inter-cluster similarity低。

  3. 聚类的性能度量分两类:

    • 聚类结果与某个参考模型reference model进行比较,称作外部指标external index 。
    • 直接考察聚类结果而不利用任何参考模型,称作内部指标internal index 。

外部指标

Jaccard系数
 FM指数

Rand指数 

ARI指数 

 内部指标

DB指数 

Dunn指数

距离度量 

常用距离计算

数值和非数值属性混合

当样本的属性为数值属性与非数值属性混合时,可以将闵可夫斯基距离与 VDM 距离混合使用。 

加权距离

当样本空间中不同属性的重要性不同时,可以采用加权距离 

直递性

直递性常被直接称为“三角不等式”

这里的距离度量满足三角不等式:

需注意的是,通常我们是基于某种形式的距离来定义“相似度度量”(similarity measure),距离越大,相似度越小。然而,用于相似度度量的距离未必一定要满足距离度量的所有基本性质,尤其是直递性。

例如在某些任务中我们可能希望有这样的相似度度量:“人”“马”分别与“人马”相似,但“人”与“马”很不相似;要达到这个目的,可以令“人”“马”与“人马”之间的距离都比较小,但“人”与“马”之间的距离很大,此时该距离不再满足直递性;这样的距离称为“非度量距离”(non-metric distance)。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1880059.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

WAIC2024 | 华院计算邀您共赴2024年世界人工智能大会,见证未来科技革新

在智能时代的浪潮汹涌澎湃之际,算法已成为推动社会进步的核心力量。作为中国认知智能技术的领军企业,华院计算在人工智能的广阔天地中,不断探索、创新,致力于将算法的潜力发挥到极致。在过去的时日里,华院计算不断探索…

昇思25天学习打卡营第7天|模型训练

模型训练 模型训练一般分为四个步骤: 构建数据集。定义神经网络模型。定义超参、损失函数及优化器。输入数据集进行训练与评估。 前面几天依次学习了前面几个步骤的操作,今天继续学习模型训练。 数据集和神经网络模型这个前面已经有详细的介绍。准确…

力扣SQL50 连续出现的数字 distinct

Problem: 180. 连续出现的数字 👨‍🏫 力扣官解 Code SELECT DISTINCTl1.Num AS ConsecutiveNums FROMLogs l1,Logs l2,Logs l3 WHEREl1.Id l2.Id - 1AND l2.Id l3.Id - 1AND l1.Num l2.NumAND l2.Num l3.Num ;

线程安全问题(二)——死锁

死锁 前言可重入锁逻辑 两个线程两把锁(死锁)死锁的特点多个线程多把锁(哲学家就餐问题)总结 前言 在前面的文章中,介绍了锁的基本使用方式——锁 在上一篇文章中,通过synchronized关键字进行加锁操作&am…

只需10分钟1条,全是原创精美视频,拆分8个步骤详细讲解!

不少朋友在问如何快速学习剪辑视频,网上还有很多在收几百到几千学费。其实所有的付费,都是认知与信息差。 这篇文章我直接讲干货,内容不多,大概3分钟可以看完。所有步骤都是富哥亲测的内容,每条视频长达1分钟以上&…

检索增强生成RAG系列4--RAG优化之问题优化

在系列2的章节中罗列了对RAG准确度的几个重要关键点,主要包括2方面,这一章就针对其中问题优化来做详细的讲解以及其解决方案。 从系列2中,我们知道初始的问题可能对于查询结果不是很好,可能是因为问题表达模糊、语义与文档不一致等…

职场必备:三大神器助你完美驾驭工作与生活;从 GTD 到SMART再到OKR:提升效率的终极指南;告别拖延,高效工作的秘密武器!

在现代职场和个人生活中,有效的时间管理和目标设定是成功的关键。我们每天都面临着无数的任务和目标。如何在纷繁复杂的日常中保持专注,高效地完成工作? GTD(Getting Things Done) GTD(Getting Things Don…

容器技术-docker4

一、docker资源限制 在使用 docker 运行容器时,一台主机上可能会运行几百个容器,这些容器虽然互相隔离,但是底层却使用着相同的 CPU、内存和磁盘资源。如果不对容器使用的资源进行限制,那么容器之间会互相影响,小的来说…

Qt:5.QWidget属性介绍(isEnabled和geometry)

目录 一、 QWidget属性的介绍: 二、Enabled属性: 2.1Enabled属性的介绍: 2.2获取控件当前可用状态的api——isEnabled(): 2.3设置控件当前的可用状态的api—— setEnabled() : 2.4 实例:通过一个按钮&…

Gin框架基础

1、一个简单的Gin示例 下载并安装Gin: go get -u github.com/gin-gonic/gin1.1 一个简单的例子 package mainimport ("net/http""github.com/gin-gonic/gin" )func main() {// 创建一个默认的路由引擎r : gin.Default()// 当客户端以GET方式访问 /hello…

企业化运维(6)_redis数据库

Redis(Remote Dictionary Server ),即远程字典服务,是一个开源的使用ANSIC语言编写、支持网络、可基于内存亦可持久化的日志型、Key-Value数据库,并提供多种语言的API。 redis是一个key-value存储系统。和Memcached类似&#xff0…

优化模型验证30:多车场车辆路径问题模型及Gurobipy验证

目录 1 数学模型 1.1 用到的符号集合 1.2 模型公式 2 模型验证代码 2.1 Gurobipy代码 2.2 结果可视化 多车场车辆路径问题的定义:大型的物流公司拥有多个车场,而每个车场都有若干车辆用于配送,决策者需要根据客户的所在位置,将客户分配到合适的车场和车辆中。 1 数学模…

深度学习基准模型Transformer

深度学习基准模型Transformer 深度学习基准模型Transformer,最初由Vaswani等人在2017年的论文《Attention is All You Need》中提出,是自然语言处理(NLP)领域的一个里程碑式模型。它在许多序列到序列(seq2seq&#xf…

matlab仿真 通信信号和系统分析(上)

(内容源自详解MATLAB/SIMULINK 通信系统建模与仿真 刘学勇编著第三章内容,有兴趣的读者请阅读原书) 一、求离散信号卷积和 主要还是使用卷积函数conv,值得注意的是,得到的卷积和长度结果为81&#xff0…

lumbda常用操作

文章目录 lumbda的常用操作将List<String>转List<Integer>filter 过滤max 和min将List<Object>转为Map将List<Object>转为Map&#xff08;重复key&#xff09;将List<Object>转为Map&#xff08;指定Map类型&#xff09;过滤List重复 lumbda的常…

【强化学习的数学原理】课程笔记--2(贝尔曼最优公式,值迭代与策略迭代)

目录 贝尔曼最优公式最优 Policy求解贝尔曼最优公式求解最大 State Value v ∗ v^* v∗根据 v ∗ v^* v∗ 求解贪婪形式的最佳 Policy π ∗ \pi^* π∗一些证明过程 一些影响 π ∗ \pi^* π∗ 的因素如何让 π ∗ \pi^* π∗ 不 “绕弯路” γ \gamma γ 的影响reward 的…

15- 22题聚合函数 - 高频 SQL 50 题基础版

目录 1. 相关知识点2. 例子2.15 - 有趣的电影2.16 - 平均售价2.17 - 项目员工 I2.18 - 各赛事的用户注册率2.19 - 查询结果的质量和占比2.20 - 每月交易 I2.21 - 即时食物配送 II2.22 - 游戏玩法分析 IV 1. 相关知识点 函数 函数含义order by排序group by分组between 小值 an…

基于web的产品管理系统

文章目录 项目介绍主要功能截图:部分代码展示设计总结项目获取方式🍅 作者主页:超级无敌暴龙战士塔塔开 🍅 简介:Java领域优质创作者🏆、 简历模板、学习资料、面试题库【关注我,都给你】 🍅文末获取源码联系🍅 项目介绍 基于web的产品管理系统,java项目。 ecli…

2024最新boss直聘岗位数据爬虫,并进行可视化分析

前言 近年来,随着互联网的发展和就业市场的变化,数据科学与爬虫技术在招聘信息分析中的应用变得越来越重要。通过对招聘信息的爬取和可视化分析,我们可以更好地了解当前的就业市场动态、职位需求和薪资水平,从而为求职者和招聘企业提供有价值的数据支持。本文将介绍如何使…

Chrome浏览器web调试(js调试、css调试、篡改前置)

目录 1. 打开开发者工具(Dev Tool) 2. 打开命令菜单 截图 3. 面板介绍 4. CSS调试 右键检查快速到达元素处 查找DOM数 利用面板Console查找DOM节点 内置函数查找上一个选择点击的元素 5. 调试JS代码(Javascript调试) 日志调试 选择查看日志等级 眼睛观测变量 …