【数学建模】——【python库】——【Pandas学习】

news2024/11/18 1:50:51

ce6fbd68767d465bbe94b775b8b811db.png

 

731bd47804784fa2897220a90a387b28.gif

 专栏:数学建模学习笔记

pycharm专业版免费激活教程见资源,私信我给你发

python相关库的安装:pandas,numpy,matplotlib,statsmodels

总篇:【数学建模】—【新手小白到国奖选手】—【学习路线】

第一卷:【数学建模】—【Python库】—【Numpy】—【学习】

本篇属于第二卷——Pandas学习笔记

步骤1:安装PyCharm和Pandas

1.下载并安装PyCharm:

  • 前往JetBrains官网,下载并安装PyCharm Community Edition(免费)或Professional Edition。
  • 安装完成后,启动PyCharm。

2.安装Pandas库:

  • 打开PyCharm,新建一个项目。

在项目窗口中,找到Terminal(终端)窗口,输入以下命令安装Pandas库:

pip install pandas

步骤2:创建并读取数据

1.创建数据文件:

  • 在项目根目录下创建一个名为data.csv的文件,输入一些示例数据。例如:
  • Name    

       Age    

       Score

    Alice    

        23     

         88

    Bob    

        25    

         92

    Charlie  

       22    

        85

    Xiaoli    

        18      

         100 

dd77fee7b03b483c82f30860edb7d575.png

2.读取数据:

  • 在项目中创建一个新的Python文件,例如   Pandas学习.py。

在Pandas学习.py中编写以下代码来读取数据 :

import pandas as pd

# 读取CSV文件
data = pd.read_csv('data.csv')

# 打印数据
print(data)

点击右上角的绿色运行按钮,或使用快捷键Shift+F10: 

d663ab442b104984a48d1de83efc6db7.png

步骤3:数据清洗和处理

3.1 处理缺失值

假设我们的数据有缺失值,可以用以下代码来处理:

修改data.csv文件,加入一些缺失值:

Name,Age,Score
Alice,23,88
Bob,25,
Charlie,,85
David,22,90
xiaoli,18,100

在Pandas学习.py中编写以下代码:

import pandas as pd

# 读取CSV文件
data_with_nan = pd.read_csv('data.csv')
print("原始数据带有缺失值:")
print(data_with_nan)

# 用平均值填充缺失的年龄
data_with_nan['Age'].fillna(data_with_nan['Age'].mean(), inplace=True)

# 用指定值填充缺失的分数
data_with_nan['Score'].fillna(0, inplace=True)

print("\n处理后的数据:")
print(data_with_nan)

运行此代码,您将看到以下输出:

bb9ca93917b04d85bf2b6b7458009754.png

3.2 数据转换

假设我们需要将年龄从岁转换为月,可以用以下代码:

在Pandas学习.py中添加以下代码:

data_with_nan['Age_in_Months'] = data_with_nan['Age'] * 12
print("\n添加年龄(以月为单位)后的数据:")
print(data_with_nan)

运行此代码,您将看到以下输出: 

3fc750a4e8114db38970cf606437165d.png

步骤4:数据分析和可视化

1.数据统计:

  • 我们可以使用Pandas提供的统计函数进行简单的数据分析:
    # 计算平均年龄
    mean_age = data['Age'].mean()
    print(f'平均年龄: {mean_age}')
    
    # 计算分数的标准差
    score_std = data['Score'].std()
    print(f'分数标准差: {score_std}')
    

    运行此代码,您将看到以下输出:

  • 41b84a22b5594fb7ae9d0873f0b871df.png

2.数据可视化:

虽然你只提到Pandas,但这里简要提及如何使用Matplotlib进行简单可视化:

import matplotlib.pyplot as plt

# 绘制年龄分布图
plt.hist(data['Age'], bins=10, alpha=0.75)
plt.xlabel('Age')
plt.ylabel('Frequency')
plt.title('Age Distribution')
plt.show()

运行此代码,您将看到一个年龄分布的直方图。

 909506a0a851457a839b0b21a14b9860.png

步骤5:高级操作

5.1 数据分组和聚合

使用groupby函数对数据进行分组和聚合,例如按年龄分组计算平均分数:

  1. Pandas学习.py中添加以下代码:

age_grouped = data_with_nan.groupby('Age')['Score'].mean()
print("\n按年龄分组的平均分数:")
print(age_grouped)

运行结果 

8d138f4ed4fa427a8205186aa113ca08.png

5.2 数据透视表

使用pivot_table函数创建数据透视表:

main.py中添加以下代码:

pivot_table = data_with_nan.pivot_table(values='Score', index='Age', columns='Name', aggfunc='mean')
print("\n数据透视表:")
print(pivot_table)

f609bd245b4b4232a9f0ab97f5df9022.png

步骤6:保存数据

6.1 保存处理后的数据

将处理后的数据保存为新的CSV文件:

main.py中添加以下代码:

data_with_nan.to_csv('processed_data.csv', index=False)

运行此代码后,您将在项目目录下看到一个名为processed_data.csv的新文件,内容如下: 

948e9f4ef964468fb6242876f1c65ae3.png

444e4fbb2bc743ecbcdcc10e4291532e.png

总结

在PyCharm中使用Pandas进行数据读取、清洗、处理、分析和保存,应用Pandas进行环境设置、数据加载、预处理、分析、可视化到简单建模的全过程。欢迎友友的提问指导!

7.进一步细节和注意事项

1.数据质量控制

数据质量控制是数据分析中至关重要的一环。确保数据的准确性和完整性是数据分析成功的基础。以下是一些常见的数据质量控制方法:

  1. 数据验证

    • 检查数据是否有重复记录,确保每一行数据的唯一性。
    • 验证数据范围是否在合理范围内(例如,年龄不应超过100岁)。
  2. 数据一致性

    • 检查同一字段的数据类型是否一致。
    • 确保同一字段的数据格式一致,例如日期格式统一为YYYY-MM-DD。
  3. 数据完整性

    • 确保关键字段没有缺失值。
    • 检查数据表之间的关联性,确保外键关系的完整性。

2.数据处理技巧

1.处理异常值

异常值是指与大多数数据点明显不同的数据点。处理异常值的方法包括:

删除异常值:如果异常值是由于数据录入错误造成的,可以直接删除。

替换异常值:使用中位数或均值替换异常值。

data_filtered = data[(data['Age'] > 0) & (data['Age'] < 100)]

2.数据转换

数据转换是指将数据从一种形式转换为另一种形式,以便于分析。

例如,可以将分类数据转换为数值数据,使用One-Hot编码:

data['Gender'] = data['Gender'].map({'Male': 1, 'Female': 0})

3.数据分析与可视化

高级可视化

数据可视化能够帮助我们更直观地理解数据。以下是一些常见的数据可视化方法:

箱线图:用于显示数据的分布情况,特别是检测异常值。

sns.boxplot(x=data['Score'])
plt.title('Score Boxplot')
plt.show()

散点图:用于显示两个变量之间的关系。

sns.scatterplot(x=data['Age'], y=data['Score'])
plt.title('Age vs Score')
plt.show()

4.时间序列分析

  • 如果数据包含时间维度,可以进行时间序列分析。
data['Date'] = pd.to_datetime(data['Date'])
data.set_index('Date', inplace=True)
data['Score'].plot()
plt.title('Score over Time')
plt.show()

8.更多数据分析与处理细节

1.扩展数据清洗技术

1.去除重复值

data_without_duplicates = data.drop_duplicates()
print("去除重复值后的数据:")
print(data_without_duplicates)

2.处理异常值: 

# 假设年龄和分数的合理范围
data_filtered = data[(data['Age'] > 0) & (data['Age'] < 100) & (data['Score'] >= 0) & (data['Score'] <= 100)]
print("去除异常值后的数据:")
print(data_filtered)

3.转换数据类型: 

data['Age'] = data['Age'].astype(int)
data['Score'] = data['Score'].astype(float)
print("转换数据类型后的数据:")
print(data.dtypes)

2.详细分析数据 

1.更多统计分析

# 计算中位数
median_age = data['Age'].median()
print(f'年龄中位数: {median_age}')

# 计算分数的方差
variance_score = data['Score'].var()
print(f'分数方差: {variance_score}')

2.高级可视化: 

import seaborn as sns

# 绘制箱线图
sns.boxplot(x=data['Score'])
plt.title('Score Boxplot')
plt.show()

# 绘制散点图
sns.scatterplot(x=data['Age'], y=data['Score'])
plt.title('Age vs Score')
plt.show()

9.实战 接单

242fe09b34ff4610be62d974ba2073e0.png

ddd1a61cdc8447c093dc62d6d34aabe0.png

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.font_manager import FontProperties

# 设置字体
plt.rcParams['font.sans-serif'] = ['SimSun']  # 设置默认字体为宋体
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示问题

# 读取数据
file_path = 'E:/python/零食大礼包销售/SuperMarket_order.txt'
data = pd.read_csv(file_path, sep=',')

# 按照付款金额分类
bins = [0, 100, 500, float('inf')]
labels = ['100以下', '100-500', '500以上']
data['付款金额分类'] = pd.cut(data['931.79'], bins=bins, labels=labels)

# 分别对订单状态、物品类别、购物方式、支付类别、付款人所在省份进行统计分析
status_counts = data['已完成'].value_counts()
category_counts = data['文体类'].value_counts()
shopping_method_counts = data['PC'].value_counts()
payment_type_counts = data['微信'].value_counts()
province_counts = data['江苏省'].value_counts()
amount_category_counts = data['付款金额分类'].value_counts()

# 绘制图表
fig, axes = plt.subplots(2, 3, figsize=(18, 12))

# 订单状态统计图
axes[0, 0].bar(status_counts.index, status_counts.values)
axes[0, 0].set_title('订单状态统计')
axes[0, 0].set_xlabel('订单状态')
axes[0, 0].set_ylabel('数量')

# 物品类别统计图
axes[0, 1].bar(category_counts.index, category_counts.values)
axes[0, 1].set_title('物品类别统计')
axes[0, 1].set_xlabel('物品类别')
axes[0, 1].set_ylabel('数量')

# 购物方式统计图
axes[0, 2].bar(shopping_method_counts.index, shopping_method_counts.values)
axes[0, 2].set_title('购物方式统计')
axes[0, 2].set_xlabel('购物方式')
axes[0, 2].set_ylabel('数量')

# 支付类别统计图
axes[1, 0].pie(payment_type_counts.values, labels=payment_type_counts.index, autopct='%1.1f%%')
axes[1, 0].set_title('支付类别统计')

# 付款人所在省份统计图
axes[1, 1].scatter(province_counts.index, province_counts.values)
axes[1, 1].set_title('付款人所在省份统计')
axes[1, 1].set_xlabel('省份')
axes[1, 1].set_ylabel('数量')

# 付款金额分类统计图
axes[1, 2].bar(amount_category_counts.index, amount_category_counts.values)
axes[1, 2].set_title('付款金额分类统计')
axes[1, 2].set_xlabel('付款金额分类')
axes[1, 2].set_ylabel('数量')

plt.tight_layout()
plt.show()

94cac4f7c2b841178008da5f280c6ba7.png

 39718f204d3346bb975fdd18fbffde61.png

10.相关应用

Pandas在实际数据分析中的应用非常广泛,以下是一些常见的应用场景:

1.金融数据分析

分析股票市场数据,包括股价趋势分析、波动率分析、技术指标计算等。

stock_data = pd.read_csv('stock_data.csv')
stock_data['Daily Return'] = stock_data['Close'].pct_change()
stock_data['Daily Return'].plot()
plt.title('Daily Return of Stock')
plt.show()

2.市场营销数据分析

  • 分析客户购买行为,进行客户细分、预测客户价值等。
sales_data = pd.read_csv('sales_data.csv')
customer_segments = sales_data.groupby('CustomerID')['PurchaseAmount'].sum()
customer_segments.plot(kind='bar')
plt.title('Customer Purchase Amount')
plt.show()

3.社会科学研究

分析社会调查数据,包括人口统计分析、社会行为模式分析等。

survey_data = pd.read_csv('survey_data.csv')
age_distribution = survey_data['Age'].value_counts()
age_distribution.plot(kind='pie')
plt.title('Age Distribution of Survey Respondents')
plt.show()

11.注意事项

1.数据隐私

  • 在处理个人数据时,确保遵守相关数据隐私法律法规,如GDPR(General Data Protection Regulation)。
  • 避免在数据处理中泄露个人敏感信息,使用数据匿名化技术。

2.性能优化

  • 对于大规模数据,使用Pandas可能会导致内存消耗过高。可以考虑使用Dask或Pandas的chunking功能进行分块处理。
    chunk_size = 10000
    chunks = pd.read_csv('large_data.csv', chunksize=chunk_size)
    for chunk in chunks:
        # 处理每个chunk
        process_chunk(chunk)
    

3.版本兼容性

  • 使用Pandas时,确保使用相同版本的Pandas库,以避免因版本差异导致的代码不兼容问题。

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1867844.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

老板电器 45 年的烹饪经验,浓缩在这款烹饪大模型中

在科技不断进步的时代&#xff0c;人工智能&#xff08;AI&#xff09;迅速成为推动各行各业发展的重要力量。家电行业也不例外&#xff0c;根据 Gartner 的报告预测&#xff0c;到 2024 年&#xff0c;AI 家电市场的规模将达到万亿美元级别。这一预估凸显了智能化在家电行业中…

大猫咪守护LoRA:定制你的大猫私人大猫咪宠物写真合影,某音某书流行款

&#x1f339;大家好&#xff01;我是安琪&#xff01;感谢大家的支持与鼓励。 大猫咪LoRA模型简介 今天应群里同学大猫咪宠物合影写真提议&#xff0c;为大家介绍一款来自作者 沐沐人像合成的主题为大猫咪守护的LoRAl模型&#xff1a;沐沐-大猫咪。这是一款当下在某音、某书…

python-docx 使用xml为docx不同的章节段落设置不同字体

本文目录 前言一、完整代码二、代码详细解析1、处理过程解释(1) 引入库并定义路径(2) 创建docx的备份文件(3) 定义命名空间(4) 打开并处理.docx文件(5) 分析和组织文档结构(6) 设置字体(7) 保存结果前言 本文主要解决的内容,就是为一个docx的不同章节段落设置不同的字体,因为…

【Week-G1】调用官方GAN实现MNIST数字识别,Pytorch框架

文章目录 1. 准备数据1.1 配置超参数1.2 下载数据1.3 配置数据 2. 创建模型2.1 定义鉴别器2.2 定义生成器 3. 训练模型3.1 创建实例3.2 开始训练3.3 保存模型 4. 什么是GAN&#xff08;对抗生成网络&#xff09;? &#x1f368; 本文为&#x1f517;365天深度学习训练营 中的学…

追求准确,还是追求举一反三,聊天机器人智能程度的困境 | Chatopera

在为企业客户上线聊天机器人客服的过程中&#xff0c;总会遇到一个问题&#xff0c;这让用户和我们都感到纠结。 到底是追求让机器人能准确的回答问题&#xff0c;还是让机器人可以举一反三的回答问题。 准确的回答问题&#xff0c;就是不容许回答错了&#xff0c;但是这样机…

windows中使用anaconda管理python版本

anaconda下载 python的版本问题实在是很大,版本低了高了都会影响脚本的执行,anaconda工具为此而生,不管是在windows下还是linux下,Anaconda的命令跟操作逻辑都是相同的,窥一斑而知全豹,本文在windows下示例如何使用anaconda anaconda的逻辑就是 他是一个全局的管理者,能创建工…

在Ubuntu中使用ROS搭建PX4 Gazebo 模拟飞行 四旋翼 固定翼

综合了网上很多教程以及踩了很多坑总结下来的教程 Ubuntu安装 此处不在详细说明&#xff0c;网上可随处搜到 ROS安装 感谢鱼香ROS大佬提供一键安装脚本 wget http://fishros.com/install -O fishros && sudo bash fishros 接下来按顺序按 1 1 2 3 1 再次运行 w…

红酒哲学:品味流转时光,探寻生活之深邃奥秘

在繁华的都市中&#xff0c;我们时常被各种声音和色彩所包围&#xff0c;追求着速度与激情。然而&#xff0c;在这喧嚣之中&#xff0c;总有那么一刻&#xff0c;我们渴望静下心来&#xff0c;品味一份不同的宁静与深度。这时&#xff0c;一杯雷盛红酒便成了我们与内心对话的桥…

太赞了!SD AI绘画,热门青衫映雪写真制作,一键出片,轻松复刻!【内含相关模型及ComfyUI工作流】

hello&#xff0c;大家好我是安琪&#xff01; 今天安琪给大家带来了一篇关于写真制作&#xff0c;我通过SD WebUI进行本次青衫映雪主题的写真制作。(相关内容文末可自行扫描获取) 准备工作&#xff1a; 1.大模型准备真人写实大模型&#xff0c;我这里使用了TQing v3.4 2.…

Radxa 学习摘录

文章目录 一、参考资料二、硬件知识 一、参考资料 技术论坛&#xff08;推荐&#xff09; 官方资料下载 wiki资料 u-boot 文档 u-boot 源码 内核文档 内核源码 原理图 二、硬件知识 Radxa 3B 主板概览 MIPI接口 MIPI CSI&#xff08;Camera Serial Interface&#xff09;…

【前端】HTML+CSS复习记录【2】

文章目录 前言一、img&#xff08;图片标签&#xff09;二、a&#xff08;链接标签&#xff09;三、ul&#xff08;无序列表&#xff09;四、ol&#xff08;有序列表&#xff09;系列文章目录 前言 长时间未使用HTML编程&#xff0c;前端知识感觉忘得差不多了。通过梳理知识点…

智慧园区大数据云平台建设方案(Word原件)

第一章 项目建设背景及现状 第二章 园区创新发展趋势 第三章 工业园区大数据存在的问题 第四章 智慧工业园区大数据建设目的 第五章 智慧园区总体构架 第六章 系统核心组件 第七章 智慧工业园区大数据平台规划设计 获取方式&#xff1a;本文末个人名片直接获取。 软件资料清单…

文本生成sql模型(PipableAI/pip-sql-1.3b)

安装环境 pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 pip install transformers 代码 question "What are the email address, town and county of the customers who are of the least common gender?"sc…

three.js - MeshStandardMaterial(标准网格材质)- 金属贴图、粗糙贴图

金属贴图、粗糙贴图 金属贴图&#xff1a;metalnessMap 和 粗糙贴图&#xff1a;roughnessMap&#xff0c;是用于模拟物体表面属性的两种重要贴图技术&#xff0c;这两种贴图&#xff0c;通常与基于物理的渲染&#xff08;PBR&#xff09;材质&#xff08;如&#xff1a;MeshSt…

linux进程是什么?

进程概念 进程Process是指计算机中已运行的程序&#xff0c;是系统进行资源分配和调度的基本单位&#xff0c;是操作系统结构的基础。 在早期面向进程设计的计算机结构中&#xff0c;进程是程序的基本执行实体。在当代面向线程设计的计算机结构中&#xff0c;进程是线程的容器…

K210视觉识别模块学习笔记6: 识别苹果_图形化操作函数_

今日开始学习K210视觉识别模块: 图形化操作函数 亚博智能 K210视觉识别模块...... 固件库: canmv_yahboom_v2.1.1.bin 训练网站: 嘉楠开发者社区 今日学习如何在识别到目标的时候添加图形化操作:(获取坐标、框出目标等) 在识别苹果的基础上 学习与添加 这些操…

docker配置国内镜像加速器

1、搜索阿里云 2、搜索容器镜像服务 点击管理控制台 配置镜像加速器

鸿蒙NEXT开发:工具常用命令—install

安装三方库。 命令格式 ohpm install [options] [[<group>/]<pkg>[<version> | tag:<tag>]] ... ohpm install [options] <folder> ohpm install [options] <har file> alias: i 说明 group&#xff1a;三方库的命名空间&#xff0c;可…

count(*) over (partition by ……)用法详解

select id,count(*) over(partition by pro_id) from sal; 以pro_id分组&#xff0c;统计分组后每个pro_id的记录总数及对应的id&#xff1b; 类似还有count(*) over(order by ……)、sum(amount) over(partition by ……)等&#xff0c;略有区别

在Linux Ubuntu系统中使用Pascal语言

Pascal是一种结构化编程语言&#xff0c;而Free Pascal作为其现代编译器&#xff0c;不仅支持跨多种操作系统和处理器架构&#xff0c;还提供了高效的内存使用和函数重载等先进功能。Free Pascal继承了Pascal语言的核心特性&#xff0c;同时进行了扩展和优化&#xff0c;使其成…