Ollama:一个在本地部署、运行LLM大型语言模型的工具

news2024/11/16 23:56:47

Ollama部署、运行大型语言模型

概述

Ollama是一个专为在本地机器上便捷部署和运行大型语言模型(LLM)而设计的工具。

官方网站:https://ollama.com/

Github:https://github.com/ollama/ollama

安装

Ollama支持macOS、Linux和Windows多个平台运行

macOS:下载Ollama

Windows:下载Ollama

Docker:可在Docker Hub上找到Ollama Docker镜像

Linux:因为使用服务器,这里便以Linux操作系统使用为例记录说明


其中Linux通过命令直接安装如下:

python

root@master:~/work# curl -fsSL https://ollama.com/install.sh | sh
>>> Downloading ollama...
######################################################################## 100.0%##O#-#                                                                        
>>> Installing ollama to /usr/local/bin...
>>> Creating ollama user...
>>> Adding ollama user to render group...
>>> Adding ollama user to video group...
>>> Adding current user to ollama group...
>>> Creating ollama systemd service...
>>> Enabling and starting ollama service...
Created symlink /etc/systemd/system/default.target.wants/ollama.service → /etc/systemd/system/ollama.service.
>>> NVIDIA GPU installed.

查看ollama的状态

python

root@master:~/work# systemctl status ollama
● ollama.service - Ollama Service
     Loaded: loaded (/etc/systemd/system/ollama.service; enabled; vendor preset: enabled)
     Active: active (running) since Thu 2024-05-16 07:48:52 UTC; 19s ago
   Main PID: 1463063 (ollama)
      Tasks: 19 (limit: 120679)
     Memory: 488.7M
        CPU: 6.848s
     CGroup: /system.slice/ollama.service
             └─1463063 /usr/local/bin/ollama serve

May 16 07:48:52 master ollama[1463063]: Couldn't find '/usr/share/ollama/.ollama/id_ed25519'. Generating new private key.
May 16 07:48:52 master ollama[1463063]: Your new public key is:
May 16 07:48:52 master ollama[1463063]: ssh-ed25519 AAAAC3NzaC1lZDI1NTE5AAAAIKkP+MSQgroycM4iPUhDAUW02qwhEIB4vtANecwzN3En

安装成功后执行ollama -v命令,查看版本信息,如果可以显示则代表已经安装好

python

root@master:~# ollama -v
ollama version is 0.1.38

配置

编辑vim /etc/systemd/system/ollama.service文件来对ollama进行配置

1.更改HOST

由于Ollama的默认参数配置,启动时设置了仅本地访问,因此需要对HOST进行配置,开启监听任何来源IP

python

[Service]
# 配置远程访问
Environment="OLLAMA_HOST=0.0.0.0"

2.更改模型存储路径

默认情况下,不同操作系统大模型存储的路径如下:

python

macOS: ~/.ollama/models

Linux: /usr/share/ollama/.ollama/models

Windows: C:\Users.ollama\models

官方提供设置环境变量OLLAMA_MODELS来更改模型文件的存储路径

python

[Service]
# 配置OLLAMA的模型存放路径
Environment="OLLAMA_MODELS=/data/ollama/models"

注意:

由于当时使用root账号,同时目录权限也属于root,配置好后导致服务无法正常启动

此时,可以查看Ollama的运行日志,特别是在遇到问题需要调试时,可以使用以下命令:

python

journalctl -u ollama

解决问题:

因为指定的目录ollama用户及用户组没有相应权限,导致服务不能启动。通过授权给相应的目录权限解决问题。

python

chown ollama:ollama ollama/models

3.更改运行GPU

配置环境变量CUDA_VISIBLE_DEVICES来指定运行Ollama的GPU,默认不需要改动,适用于多卡环境。

python

Environment="CUDA_VISIBLE_DEVICES=0,1"

4.应用配置 重载systemd并重启Ollama

python

systemctl daemon-reload

systemctl restart ollama

5.访问测试

浏览器访问http://IP:11434/,出现Ollama is running代表成功。 在这里插入图片描述

Ollama命令

Shell窗口输入ollama,打印ollama相关命令说明

python

root@master:~/work# ollama
Usage:
  ollama [flags]
  ollama [command]

Available Commands:
  serve       Start ollama
  create      Create a model from a Modelfile
  show        Show information for a model
  run         Run a model
  pull        Pull a model from a registry
  push        Push a model to a registry
  list        List models
  ps          List running models
  cp          Copy a model
  rm          Remove a model
  help        Help about any command

Flags:
  -h, --help      help for ollama
  -v, --version   Show version information

Use "ollama [command] --help" for more information about a command.

ollama的操作命令跟docker操作命令非常相似

python

ollama serve	# 启动ollama
ollama create	# 从模型文件创建模型
ollama show		# 显示模型信息
ollama run		# 运行模型
ollama pull		# 从注册仓库中拉取模型
ollama push		# 将模型推送到注册仓库
ollama list		# 列出已下载模型
ollama cp		# 复制模型
ollama rm		# 删除模型
ollama help		# 获取有关任何命令的帮助信息

模型库

Ollama的Library,类似Docker的Docker Hub,在这里可以查找受Ollama支持的大模型。 在这里插入图片描述 以下是一些可以下载的示例模型:

注意:Ollama支持8 GB的RAM可用于运行7B型号,16 GB可用于运行13B型号,32 GB可用于运行33B型号。当然这些模型是经过量化过的。

在这里插入图片描述

使用示例

下载llama3-8b模型

python

root@master:~# ollama pull llama3:8b
pulling manifest 
pulling 00e1317cbf74... 100% ▕██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████▏ 4.7 GB                         
pulling 4fa551d4f938... 100% ▕██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████▏  12 KB                         
pulling 8ab4849b038c... 100% ▕██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████▏  254 B                         
pulling 577073ffcc6c... 100% ▕██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████▏  110 B                         
pulling ad1518640c43... 100% ▕██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████▏  483 B                         
verifying sha256 digest 
writing manifest 
removing any unused layers 
success

下载成功查看模型

python

root@master:~# ollama list
NAME            ID              SIZE    MODIFIED      
llama3:8b       a6990ed6be41    4.7 GB  3 minutes ago

运行模型并进行对话

python

root@master:~# ollama run llama3:8b
>>> hi
Hi! How's your day going so far? I'm here to chat and help with any questions or topics you'd like to discuss. What's on your mind?

>>> Send a message (/? for help)

自定义模型

所谓自定义模型就是不适用Ollama官方模型库中的模型,理论可以使用其他各类经过转换处理的模型

从GGUF导入

Ollama支持在Modelfile文件中导入GGUF模型

创建一个名为 Modelfile的文件,其中包含一条FROM指令,其中包含要导入的模型的本地文件路径。

python

FROM ./Llama3-FP16.gguf

在Ollama中创建模型

python

ollama create llama3 -f Modelfile

运行模型

python

ollama run llama3 

完整执行日志如下:

python

root@master:~/work# touch Modelfile
root@master:~/work# mv /root/work/jupyterlab/models/Llama3-FP16.gguf ./
root@master:~/work# ollama create llama3 -f Modelfile
transferring model data 
using existing layer sha256:547c95542e3fa5cc232295ea3cbd49fc14b4f4489ca9b465617076c1f55d4526 
creating new layer sha256:81834e074ec2a24086bdbf16c3ba70eb185f5883cde6495e95f5141e4d325456 
writing manifest 
success
root@master:~/work# ollama run llama3
>>> Send a message (/? for help)

自定义提示

Ollama库中的模型可以通过提示进行自定义。

python

FROM llama3

# 设置温度参数
PARAMETER temperature 1

# 设置SYSTEM 消息
SYSTEM """
作为AI智能助手,你将竭尽所能为员工提供严谨和有帮助的答复。
"""

更多参数说明参考:Modelfile文档

从PyTorch或Safetensors导入

所谓从从PyTorch或Safetensors导入Ollama,其实就是使用llama.cpp项目,对PyTorch或Safetensors类型的模型进 行转换、量化处理成GGUF格式的模型,然后再用Ollama加载使用 。

上述从GGUF导入使用的模型:Llama3-FP16.gguf便是经过llama.cpp项目处理得到的。

llama.cpp的使用参考:使用llama.cpp实现LLM大模型的格式转换、量化、推理、部署

官方文档参考:导入模型指南

开启服务

运行模型后,执行ollama serve命令启动Ollama服务,然后就可以通过API形式进行模型调用

ollama serve会自动启动一个http服务,可以通过http请求模型服务

首次启动会自动生成ssh私钥文件,同时打印公钥内容。

python

root@master:/usr/local/docker# ollama serve
Couldn't find '/root/.ollama/id_ed25519'. Generating new private key.
Your new public key is: 

ssh-ed25519 AAAAC3NzaC1lZDI1NTE5ssssssxxxxxxxxxxjx3diFB3a5deoGLnT7gHXxjA6R

2024/05/16 09:27:27 routes.go:1008: INFO server config env="map[OLLAMA_DEBUG:false OLLAMA_LLM_LIBRARY: OLLAMA_MAX_LOADED_MODELS:1 OLLAMA_MAX_QUEUE:512 OLLAMA_MAX_VRAM:0 OLLAMA_NOPRUNE:false OLLAMA_NUM_PARALLEL:1 OLLAMA_ORIGINS:[http://localhost https://localhost http://localhost:* https://localhost:* http://127.0.0.1 https://127.0.0.1 http://127.0.0.1:* https://127.0.0.1:* http://0.0.0.0 https://0.0.0.0 http://0.0.0.0:* https://0.0.0.0:*] OLLAMA_RUNNERS_DIR: OLLAMA_TMPDIR:]"
time=2024-05-16T09:27:27.635Z level=INFO source=images.go:704 msg="total blobs: 0"
time=2024-05-16T09:27:27.635Z level=INFO source=images.go:711 msg="total unused blobs removed: 0"
time=2024-05-16T09:27:27.635Z level=INFO source=routes.go:1054 msg="Listening on 127.0.0.1:11434 (version 0.1.38)"
time=2024-05-16T09:27:27.635Z level=INFO source=payload.go:30 msg="extracting embedded files" dir=/tmp/ollama4098813456/runners
time=2024-05-16T09:27:31.242Z level=INFO source=payload.go:44 msg="Dynamic LLM libraries [cpu cpu_avx cpu_avx2 cuda_v11 rocm_v60002]"
time=2024-05-16T09:27:31.401Z level=INFO source=types.go:71 msg="inference compute" id=GPU-4c974b93-cf0c-486e-9e6c-8f91bc02743c library=cuda compute=7.0 driver=12.2 name="Tesla V100S-PCIE-32GB" total="31.7 GiB" available="16.5 GiB"

在这里插入图片描述

REST API

更多、具体API,请参阅 API文档

1.生成回复

python

curl http://IP:11434/api/chat -d '{
  "model": "llama3:8b",
  "messages": [
    { "role": "user", "content": "你好啊" }
  ]
}'

请求参数示例:

python

{
    "model": "llama3",
    "prompt": "你好啊",
    "stream": false
}

2.与模型聊天

python

curl http://IP:11434/api/chat -d '{
  "model": "llama3",
  "messages": [
    { "role": "user", "content": "你好啊" }
  ]
}'

请求参数示例:

python

{
    "model": "llama3",
    "messages": [
        {
            "role": "system",
            "content": "你是一个乐于助人的AI助手。"
        },
        {
            "role": "user",
            "content": "你好啊"
        }
    ],
    "stream": false
}

卸载Ollama

停止并禁用服务

python

systemctl stop ollama

systemctl disable ollama

删除服务文件和Ollama二进制文件

python

rm /etc/systemd/system/ollama.service 

rm $(which ollama)

清理Ollama用户和组

python

rm -r /usr/share/ollama

userdel ollama

groupdel ollama

One-API

概述

One-API是一个OpenAI接口管理 & 分发系统,支持各类大模型。这里使用Docker快速进行部署。

GitHub:https://github.com/songquanpeng/one-api

拉取镜像

bash

docker pull justsong/one-api

创建挂载目录

bash

mkdir -p /usr/local/docker/oneapi

启动容器

bash

docker run --name one-api -d --restart always -p 3001:3000 -e TZ=Asia/Shanghai -v /usr/local/docker/oneapi:/data justsong/one-api

访问IP:3001

初始账号用户名为 root,密码为 123456

在这里插入图片描述

One-API管理本地模型

在创建渠道时选择Ollama,然后手工填上自己要使用的模型,密钥任意,最重要的是后面在代理中写上自己ollama服务的地址即可 在这里插入图片描述 测试成功后,在各类OpenAI套壳软件中,通过配置类似于OpenAI的密钥、API地址等参数,就可以象使用OpenAI一样。 在这里插入图片描述

Open WebUI

概述

Open WebUI 是一个可扩展、功能丰富且用户友好的自托管 WebUI,旨在完全离线操作。它支持各种 LLM 运行程序,包括 Ollama 和 OpenAI 兼容的 API。

GitHub:https://github.com/open-webui/open-webui

Open WebUI:https://docs.openwebui.com/

Open WebUI社区: https://openwebui.com/

Docker部署

使用Docker快速安装部署Open WebUI,需要注意:确保在Docker命令中包含-v open-webui:/app/backend/data。因为它确保数据库正确安装并防止任何数据丢失。

使用Docker进行Open WebUI安装部署,根据场景不同,可分为以下几类:

1.默认配置安装,如果计算机上有Ollama,请使用以下命令:

python

docker run -d -p 3000:8080 --add-host=host.docker.internal:host-gateway -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main

docker run -d -p 3000:8080  -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main

2.Ollama位于不同的服务器上,连接到另一台服务器上的 Ollama,请将OLLAMA_BASE_URL更改为服务器的URL:

python

docker run -d -p 3000:8080 -e OLLAMA_BASE_URL=https://example.com -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main

3.要运行支持Nvidia GPU的Open WebUI,请使用以下命令:

python

docker run -d -p 3000:8080 --gpus all --add-host=host.docker.internal:host-gateway -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:cuda

4.安装带有捆绑Ollama支持的Open WebUI

使用GPU支持:通过运行以下命令来利用GPU资源:

python

docker run -d -p 3000:8080 --gpus=all -v ollama:/root/.ollama -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:ollama

仅适用于CPU:如果不使用GPU,请改用以下命令:

python

docker run -d -p 3000:8080 -v ollama:/root/.ollama -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:ollama

Open WebUI配置

访问http://IP:3000,创建一个账号(管理员) 在这里插入图片描述 进入Open WebUI后,界面如下。在Settings中进行相关设置。 在这里插入图片描述 设置语言 在这里插入图片描述 设置Ollama的访问地址 在这里插入图片描述 选择模型,开始聊天。 在这里插入图片描述

如何系统的去学习AI大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
      - L1.4.1 知识大模型
      - L1.4.2 生产大模型
      - L1.4.3 模型工程方法论
      - L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
      - L2.1.1 OpenAI API接口
      - L2.1.2 Python接口接入
      - L2.1.3 BOT工具类框架
      - L2.1.4 代码示例
    • L2.2 Prompt框架
      - L2.2.1 什么是Prompt
      - L2.2.2 Prompt框架应用现状
      - L2.2.3 基于GPTAS的Prompt框架
      - L2.2.4 Prompt框架与Thought
      - L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
      - L2.3.1 流水线工程的概念
      - L2.3.2 流水线工程的优点
      - L2.3.3 流水线工程的应用
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
      - L3.1.1 Agent模型框架的设计理念
      - L3.1.2 Agent模型框架的核心组件
      - L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
      - L3.2.1 MetaGPT的基本概念
      - L3.2.2 MetaGPT的工作原理
      - L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
      - L3.3.1 ChatGLM的特点
      - L3.3.2 ChatGLM的开发环境
      - L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
      - L3.4.1 LLAMA的特点
      - L3.4.2 LLAMA的开发环境
      - L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

学习计划:

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的所有 ⚡️ 大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

全套 《LLM大模型入门+进阶学习资源包↓↓↓ 获取~

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1864691.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

汇凯金业:预测黄金现货涨跌趋势的关键方法

在金融市场中,黄金现货作为一种重要的避险资产,价格波动受到全球经济、货币政策、市场情绪等多重因素的影响。要有效预测黄金现货的涨跌趋势,不仅需深刻理解这些因素,还需掌握一系列的分析技巧。本文将详细介绍一些关键的分析方法…

【日记】希望文竹长得越来越好吧(856 字)

正文 为什么昨天给老师提早说了今天上课…… 今天都要忙死了。不论上午下午都手忙脚乱。上午之前的存量客户来开新账户,流程卡在客户经理尽调那里。恰好那个客户经理还是部门主管,我们没一个人敢催。向副行长汇报情况,又跟客户说。客户跟他们…

RK3588 Android13 TvSetting 中增加 WebView 切换菜单

前言 电视产品,客户要求在设置中设备偏好设置子菜单下增加一个 WebView切换菜单,一开始不知道怎么下手,后来想起来在设置开发者选项里有一个类似的菜单, 去把实现逻辑搞出来应该就ok。 效果图 TvSetting 部分修改文件清单 packages/apps/TvSettings/Settings/res/values…

秋招突击——6/24——复习{完全背包问题——买书,状态转换机——股票买卖V}——新作{两数相除,LRU缓存实现}

文章目录 引言复习完全背包问题——买书个人实现 状态转换机——股票买卖V个人实现参考实现 新作两数相除个人实现 新作LRU缓存实现个人实现unordered_map相关priority_queue相关 参考实现自己复现 总结 引言 今天知道拼多多挂掉了,难受,那实习就是颗粒无…

申瓯通信在线录音管理系统任意文件读取漏洞复现

简介 申瓯通信设备有限公司在线录音管理系统 download 接口处任意文件读取漏洞,未经身份验证攻击者可通过该漏洞读取系统重要文件、数据库配置文件等等,导致网站处于极度不安全状态。 漏洞复现 FOFA语法: title="在线录音管理系统" 访问界面如下所示: POC: /m…

推荐一本RMS包作者写的我正在追读的书《Regression Modeling Strategies》

熟悉我的粉丝都清楚,我很少推荐书,这次推荐这本书是我目前正在读的,这是本老书了,关于回归模型的,我觉得写的很好。 写这本书的就是RMS包的作者,这是他早些年写的书,我们可以结合他写的书来加深…

mechanize - 自动化与HTTP web服务器的交互操作

1、前言 随着自动化测试的普及与落地推广,出现了众多知名的自动化测试工具,如Selenium 、Robot Framework、Playwright等。本文将介绍一款在Python环境下的mechanize库,这个库能够模拟浏览器行为,支持发送HTTP请求、解析HTML页面和…

Day13—大语言模型

定义 大语言模型(Large Language Models)是一种基于深度学习的自然语言处理(NLP)模型,用于处理和生成人类语言文本。 一、认识NLP 什么是NLP ​ NLP(Natural Language Processing)&#xff0…

vue3+crypto-js插件实现对密码加密后传给后端

最近在做项目的过程中又遇到了一个新的问题,在实现后端管理系统的个人信息页面中,涉及到修改密码的功能,刚开始我直接通过传参的方式将修改的密码传入给后端,可是后端说需要将原密码、新密码以及确认密码都进行加密处理&#xff0…

高铝粉煤灰提取氧化铝可实现资源最大化利用 我国政府重视程度高

高铝粉煤灰提取氧化铝可实现资源最大化利用 我国政府重视程度高 高铝粉煤灰,是指氧化铝含量大于37%的粉煤灰,高铝粉煤灰提取氧化铝,是以高铝粉煤灰为原料,提取氧化铝的技术,可以提高我国氧化铝供应能力,实现…

C语言的学习发展路线(都是干货)

哈喽,大家好呀~我又回来了,前期比较忙,没有时间来更文,现在给大家推荐了一个C语言的学习路线,供大家一起学习啦! 1. 环境搭建与工具篇 选择编译器:常用的编译器有gcc、Clang、Visual Studio等。…

Linux rpm包管理

rpm用于互联网下载包的打包及安装工具,它包含在某些Linux分发版中。它生成具有.RPM扩展名的文件。RPM是RedHat Package Manager (RedHat软件包管理工具)的缩写,类似windows的setup.exe,这一文件格式名称虽然打上了RedHat的标志&am…

推荐给中小学生的暑假打字神器

暑假是孩子们放松身心、增长知识的好时机。在这个漫长的假期里,家长们不仅希望孩子能够快乐地度过每一天,还希望他们能在学习上有所进步。尤其是随着科技的发展,熟练的打字技巧已经成为现代学习和工作的基本技能之一。今天,我要向…

10分钟掌握Python缓存,效率提升1000%

全文速览 python的不同缓存组件的使用场景和使用样例cachetools的使用 项目背景 代码检查项目,需要存储每一步检查的中间结果,最终把结果汇总并写入文件中 在中间结果的存储中 可以使用context进行上下文的传递,但是整体对代码改动比较大…

Jira实践案例分享:小米集团如何通过API请求优化、数据治理与AI智能客服等,实现Jira系统的高效运维

日前,Atlassian中国合作伙伴企业日活动在上海成功举办。活动以“AI协同 创未来——如何利用人工智能提升团队协作,加速产品交付”为主题,深入探讨了AI技术在团队协作与产品交付中的创新应用与实践,吸引了众多业内专家、企业客户及…

股掌柜:实时行情数据和工具:揭示投资潜力的关键

如今充斥着各种投资信息、交易平台和金融工具的时代,如何抓住投资机会成为了每个投资者必须面对的重要挑战。一个明确的投资策略和准确的市场分析成为了判断市场走势和抓住投资机会的关键。而实时行情数据和工具的使用则能够为投资者提供全面、准确的市场信息&#…

选择诊所管理系统的原则是什么?

如今,诊所管理系统已成为医疗机构提升管理效率、优化患者服务的重要工具。然而,市场上的诊所管理系统琳琅满目,功能各异,因此,如何选择一款适合自己诊所的管理系统,是许多诊所管理者需要思考的问题。下面&a…

idea常用配置 | 快捷注释

idea快速注释 一、类上快速注释 (本方法是IDEA环境自带的,设置特别方便简单易使用) 1、偏好设置->编辑器->文件和代码模版 | File-Settings-Editor-File and Code Templates 2、右下方的“描述”中有相对应的自动注注释配置格式 贴…

什么是期货基金?

期货基金,是指广大投资者将资金集中起来,委托给专业的期货投资机构,并通过商品交易顾问进行期货投资交易,投资者承担投资风险并享有投资利润的一种集合投资方式。期货基金的投资对象主要有两大类商品:期货与金融期货。…

使用nvm命令进行node和npm版本下载以及切换

下载以及安装nvm方式 https://blog.csdn.net/ppz8823/article/details/130862191 1.查看nvm版本 nvm -v2.查看node 和 npm版本 node -v npm -v3.使用nvm查看已下载的node版本 nvm ls4.使用nvm 查看可使用的在线node版本 nvm list available4.下载想要使用的node版本&#x…