用户态协议栈06-TCP三次握手

news2025/1/23 4:40:12

最近由于准备软件工程师职称考试,然后考完之后不小心生病了,都没写过DPDK的博客了。今天开始在上次架构优化的基础上增加TCP的协议栈流程。

什么是TCP

百度百科:TCP即传输控制协议(Transmission Control Protocol)是一种面向连接的、可靠的、基于字节流的传输层通讯协议。

这里最需要关注的就是基于字节流,在我们使用Linux的Posix API创建TCP的Socket时,我们通常会这样操作:

int socket = socket(AF_INET, SOCK_STREAM, 0);

其中的SOCK_STREAM参数的意思就是创建流式套接字。在写UDP的时候,只需要单纯的发送一个一个报文就可以,因为UDP是面向数据包的。TCP相对UDP来说是比较复杂的,它对每一个TCP数据流都需要一个对应的TCP控制块,控制数据流。

数据结构

TCP状态

typedef enum _LN_TCP_STATUS {
	LN_TCP_STATUS_CLOSED = 0,
	LN_TCP_STATUS_LISTEN,
	LN_TCP_STATUS_SYN_RECV,
	LN_TCP_STATUS_SYN_SEND,
	LN_TCP_STATUS_ESTABLELISTEN,

	LN_TCP_STATUS_FIN_WAIT_1,
	LN_TCP_STATUS_FIN_WAIT_2,
	LN_TCP_STATUS_CLOSEING,
	LN_TCP_STATUS_TIME_WAIT,

	LN_TCP_STATUS_CLOSE_WAIT,
	LN_TCP_STATUS_LAST_ACK,
} LN_TCP_STATUS;

定义TCP的11个状态,LN没有别的意思,就是我的名字lenn的缩写而已。

TCP控制块

struct ln_tcp_stream {

	int fd;

	uint32_t sip;
	uint32_t dip;

	uint16_t sport;
	uint16_t dport;

	uint16_t proto;

	uint8_t localmac[RTE_ETHER_ADDR_LEN];

	uint32_t snd_nxt;
	uint32_t rev_nxt;

	LN_TCP_STATUS status;

	struct rte_ring* snd_buf;
	struct rte_ring* rev_buf;

	struct ln_tcp_stream* prev;
	struct ln_tcp_stream* next;
};
  • fd:socket句柄
  • sip、dip:源ip和目的ip
  • proto:协议类型
  • localmac:本地mac地址
  • snd_nxt:seq
  • rev_nxt:ack
  • snd_buf:发送队列
  • rev_buf:接收队列
  • prev、next:链表存储所有tcp块

TCP数据流

struct ln_tcp_fragment {

	uint16_t sport;
	uint16_t dport;
	uint32_t seqnum;
	uint32_t acknum;
	uint8_t  hdrlen_off;
	uint8_t  tcp_flags;
	uint16_t windows;
	uint16_t cksum;
	uint16_t tcp_urp;

	int optlen;
	uint32_t option[TCP_OPTION_LENGTH];

	uint8_t* data;
	int length;
};

将tcp数据包的参数定义到fragment里面,包括数据和数据长度。

TCP控制块链表

struct ln_tcp_table {

	int count;
	struct ln_tcp_stream* streams;
};

struct ln_tcp_table* tcpt = NULL;

static struct ln_tcp_table* ln_tcp_instance(void) {

	if(tcpt == NULL) {
		tcpt = rte_malloc("tcpt", sizeof(struct ln_tcp_table), 0);
		if(!tcpt) {

			rte_exit(EXIT_FAILURE, "Error with malloc tcpt");
		}

		memset(tcpt, 0, sizeof(struct ln_tcp_table));
	}

	return tcpt;
}

static struct ln_tcp_stream* ln_tcp_stream_search(uint32_t sip, uint32_t dip, uint16_t sport, uint16_t dport) {

	struct ln_tcp_table* table = ln_tcp_instance();
	struct ln_tcp_stream* iter;
	
	for(iter = table->streams; iter != NULL; iter = iter->next) {

		if(iter->dip == dip && iter->sip == sip && iter->sport == sport && iter->dport == dport) {
			
			return iter;
		}
	}

	return NULL;
}

static struct ln_tcp_stream* ln_tcp_stream_create(uint32_t sip, uint32_t dip, uint32_t sport, uint32_t dport) {

	struct ln_tcp_stream* stream = rte_malloc("ln_tcp_stream", sizeof(struct ln_tcp_stream), 0);
	if(!stream) return NULL;

	stream->sip = sip;
	stream->dip = dip;
	stream->sport = sport;
	stream->dport = dport;
	stream->proto = IPPROTO_TCP;
	stream->status = LN_TCP_STATUS_LISTEN;

	uint32_t next_seed = time(NULL);
	stream->snd_nxt = rand_r(&next_seed) % TCP_MAX_SEQ;

	stream->rev_buf = rte_ring_create("tcp_rev_ring", RING_SIZE, rte_socket_id(), 0);
	stream->snd_buf = rte_ring_create("tcp_snd_ring", RING_SIZE, rte_socket_id(), 0);

	rte_memcpy(stream->localmac, gSrcMac, RTE_ETHER_ADDR_LEN);

	struct ln_tcp_table* table = ln_tcp_instance();
	LL_ADD(stream, table->streams);

	return stream;
}

单例模式,将所有的TCP控制块存储在一个链表中,同时统计有多少个TCP控制块。根据源端口,目的端口,源IP和目的IP来搜索链表中有没有已经存在的TCP控制块;如果没有搜索到的话,创建新的TCP控制块并且插入到链表中。需要注意的是,每个TCP控制块都有自己的环形收发缓冲区用来管理自己的数据流fragment。

协议栈函数

TCP流程控制

static int ln_tcp_process(struct rte_mbuf* tcpmbuf) {

	printf("ln_tcp_process\n");
	struct rte_ipv4_hdr* iphdr = rte_pktmbuf_mtod_offset(tcpmbuf, struct rte_ipv4_hdr*, sizeof(struct rte_ether_hdr));
	struct rte_tcp_hdr* tcphdr = (struct rte_tcp_hdr*)(iphdr + 1);
#if 1
	uint16_t tcpcksum = tcphdr->cksum;
	tcphdr->cksum = 0;
	uint16_t cksum = rte_ipv4_udptcp_cksum(iphdr, tcphdr);

	if(tcpcksum != cksum) {

		printf("cksum: %x, tcp cksum: %x\n", cksum, tcpcksum);
		return -1;
	}
#endif
	struct ln_tcp_stream* stream = ln_tcp_stream_search(iphdr->src_addr, iphdr->dst_addr, tcphdr->src_port, tcphdr->dst_port);
	if(stream == NULL) {

		stream = ln_tcp_stream_create(iphdr->src_addr, iphdr->dst_addr, tcphdr->src_port, tcphdr->dst_port);
		
		if(stream == NULL)
			return -2;
	}
	switch(stream->status) {

		case LN_TCP_STATUS_CLOSED:
			break;
		case LN_TCP_STATUS_LISTEN:
			printf("listen\n");
			ln_tcp_handle_listen(stream, tcphdr);
			break;
		case LN_TCP_STATUS_SYN_RECV:
			printf("recv\n");
			ln_tcp_handle_syn_recv(stream, tcphdr);
			break;
		case LN_TCP_STATUS_SYN_SEND:
			break;
		case LN_TCP_STATUS_ESTABLELISTEN:
		{
			printf("establelisten\n");
			uint8_t hdrlen = (tcphdr->data_off & 0xF0);
			//hdrlen >= 4;
			uint8_t* offload = (uint8_t*)(tcphdr + 1) + hdrlen * 4;
			printf("offload: %s\n", offload);
			break;
		}
		case LN_TCP_STATUS_FIN_WAIT_1:
			break;
		case LN_TCP_STATUS_FIN_WAIT_2:
			break;
		case LN_TCP_STATUS_CLOSEING:
			break;
		case LN_TCP_STATUS_TIME_WAIT:
			break;
		case LN_TCP_STATUS_CLOSE_WAIT:
			break;
		case LN_TCP_STATUS_LAST_ACK:
			break;
	}

	return 0;
}

这里是主要的TCP流程控制函数,这里已经完成的部分只是实现了TCP的三次握手,比较直观的说就是,点击网络助手的连接可以连接成功:

首先我们需要校验每一个TCP数据包,如果校验结果不对,那包数据就是错误的,直接返回。其实在这里,ln_tcp_handle_syn_recv不是必要的,只要进入的ESTABLELISTEN状态都是可以连接成功的。

组织TCP数据包

static int ln_encode_tcp_pkt(uint8_t* msg, uint32_t sip, uint32_t dip, uint8_t* smac, uint8_t* dmac, struct ln_tcp_fragment* fragment) {

	printf("ln_encode_tcp_pkt\n");
	uint16_t hdr_len = sizeof(struct rte_ether_hdr) + sizeof(struct rte_ipv4_hdr) + sizeof(struct rte_tcp_hdr);
	uint16_t total_len = fragment->length + hdr_len + fragment->optlen * sizeof(uint32_t);

	struct rte_ether_hdr* ethhdr = (struct rte_ether_hdr*)msg;
	rte_memcpy(ethhdr->s_addr.addr_bytes, smac, RTE_ETHER_ADDR_LEN);
	rte_memcpy(ethhdr->d_addr.addr_bytes, dmac, RTE_ETHER_ADDR_LEN);
	ethhdr->ether_type = htons(RTE_ETHER_TYPE_IPV4);

	struct rte_ipv4_hdr* iphdr = (struct rte_ipv4_hdr*)(ethhdr + 1);
	iphdr->version_ihl = 0x45;
	iphdr->time_to_live = 64;
	iphdr->src_addr = sip;
	iphdr->dst_addr = dip;
	iphdr->next_proto_id = IPPROTO_TCP;
	iphdr->fragment_offset = 0;
	iphdr->total_length = htons(total_len - sizeof(struct rte_ether_hdr));
	iphdr->packet_id = 0;
	iphdr->type_of_service = 0;
	iphdr->hdr_checksum = 0;
	iphdr->hdr_checksum = rte_ipv4_cksum(iphdr);

	struct rte_tcp_hdr* tcphdr = (struct rte_tcp_hdr*)(iphdr + 1);
	tcphdr->src_port = fragment->sport;
	tcphdr->dst_port = fragment->dport;
	tcphdr->recv_ack = htonl(fragment->acknum);
	tcphdr->sent_seq = htonl(fragment->seqnum);
	tcphdr->data_off = fragment->hdrlen_off;
	tcphdr->rx_win = fragment->windows;
	tcphdr->tcp_flags = fragment->tcp_flags;
	tcphdr->tcp_urp = fragment->tcp_urp;

	if(fragment->data != NULL) {
		uint8_t* offload = (uint8_t*)(tcphdr + 1) + fragment->optlen * sizeof(uint32_t);
		rte_memcpy(offload, fragment->data, fragment->length);
	}

	tcphdr->cksum = 0;
	tcphdr->cksum = rte_ipv4_udptcp_cksum(iphdr, tcphdr);

	return 0;
}

static struct rte_mbuf* ln_send_tcp(struct rte_mempool* mbuf_pool, uint32_t sip, uint32_t dip, uint8_t* smac, uint8_t* dmac, struct ln_tcp_fragment* fragment) {

	struct rte_mbuf* mbuf = rte_pktmbuf_alloc(mbuf_pool);
	if(!mbuf) {

		rte_exit(EXIT_FAILURE, "rte_pktmbuf_alloc tcp\n");
	}

	uint16_t total_len = fragment->length + sizeof(struct rte_ether_hdr) + sizeof(struct rte_ipv4_hdr) + sizeof(struct rte_tcp_hdr) + fragment->optlen * sizeof(uint32_t);
	mbuf->pkt_len = total_len;
	mbuf->data_len = total_len;
	uint8_t* pktdata = rte_pktmbuf_mtod(mbuf, uint8_t*);
	ln_encode_tcp_pkt(pktdata, sip, dip, smac, dmac, fragment);

	return mbuf;
}

这里不解释了,一直都是这样过来的,哪里有问题了[doge]

TCP过程转换

三次握手过程

参考这篇文章,我这里就摘录一下文字总结的部分。

三次握手是 TCP 连接的建立过程。在握手之前,主动打开连接的客户端结束 CLOSE 阶段,被动打开的服务器也结束 CLOSE 阶段,并进入 LISTEN 阶段。随后进入三次握手阶段:

  1. 首先客户端向服务器发送一个 SYN 包,并等待服务器确认,其中:
    - 标志位为 SYN,表示请求建立连接
    - 序号为 Seq = x(x 一般取随机数)
    - 随后客户端进入 SYN-SENT 阶段
  2. 服务器接收到客户端发来的 SYN 包后,对该包进行确认后结束 LISTEN 阶段,并返回一段 TCP 报文,其中:
    - 标志位为 SYN 和 ACK,表示确认客户端的报文 Seq 序号有效,服务器能正常接收客户端发送的数据,并同意创建新连接
    - 序号为 Seq = y
    - 确认号为 Ack = x + 1,表示收到客户端的序号 Seq 并将其值加 1 作为自己确认号 Ack 的值,随后服务器端进入 SYN-RECV 阶段
  3. 客户端接收到发送的 SYN + ACK 包后,明确了从客户端到服务器的数据传输是正常的,从而结束 SYN-SENT 阶段。并返回最后一段报文。其中:
    - 标志位为 ACK,表示确认收到服务器端同意连接的信号
    - 序号为 Seq = x + 1,表示收到服务器端的确认号 Ack,并将其值作为自己的序号值
    - 确认号为 Ack= y + 1,表示收到服务器端序号 seq,并将其值加 1 作为自己的确认号 Ack 的值
    - 随后客户端进入 ESTABLISHED
    当服务器端收到来自客户端确认收到服务器数据的报文后,得知从服务器到客户端的数据传输是正常的,从而结束 SYN-RECV 阶段,进入 ESTABLISHED 阶段,从而完成三次握手。
服务器LISTEN状态
static int ln_tcp_handle_listen(struct ln_tcp_stream* stream, struct rte_tcp_hdr* hdr) {

	if(hdr->tcp_flags & RTE_TCP_SYN_FLAG) {

		if(stream->status == LN_TCP_STATUS_LISTEN) {

			struct ln_tcp_fragment* fragment = rte_malloc("tcp_fragment", sizeof(struct ln_tcp_fragment), 0);
			if(!fragment) {

				return -1;
			}
			memset(fragment, 0, sizeof(struct ln_tcp_fragment));
			
			fragment->sport = hdr->dst_port;
			fragment->dport = hdr->src_port;

			struct in_addr addr;
			addr.s_addr = stream->sip;
			printf("tcp --> src: %s:%d ", inet_ntoa(addr), ntohs(hdr->src_port));

			addr.s_addr = stream->dip;
			printf("  --> dst: %s:%d\n", inet_ntoa(addr), ntohs(hdr->dst_port));

			fragment->seqnum = stream->snd_nxt;
			printf("before get ack\n");
			fragment->acknum = ntohl(hdr->sent_seq) + 1;
			printf("before get flags\n");
			fragment->tcp_flags = (RTE_TCP_ACK_FLAG | RTE_TCP_SYN_FLAG);
			
			fragment->windows = TCP_INITIAL_WINDOW;
			fragment->hdrlen_off = 0x50;

			fragment->data = NULL;
			fragment->length = 0;
			rte_ring_mp_enqueue(stream->snd_buf, fragment);
			stream->status = LN_TCP_STATUS_SYN_RECV;
		}
	}


	return 0;
}
服务器SYN_RECV状态
static int ln_tcp_handle_syn_recv(struct ln_tcp_stream* stream, struct rte_tcp_hdr* hdr) {

	if(hdr->tcp_flags & RTE_TCP_ACK_FLAG) {

		if(stream->status == LN_TCP_STATUS_SYN_RECV) {

			uint32_t ack = ntohl(hdr->recv_ack);
			if(ack == stream->snd_nxt + 1) {

				
			}

			stream->status = LN_TCP_STATUS_ESTABLELISTEN;
		}
	}

	return 0;
}

完整代码



#include <rte_eal.h>
#include <rte_ethdev.h>
#include <rte_mbuf.h>
#include <rte_malloc.h>
#include <rte_timer.h>
#include <rte_ring.h>

#include <stdio.h>
#include <stdlib.h>
#include <arpa/inet.h>

#include "arp.h"

#define ENABLE_SEND		1
#define ENABLE_ARP		1
#define ENABLE_ICMP		1
#define ENABLE_ARP_REPLY	1

#define ENABLE_DEBUG		1

#define ENABLE_TIMER		1


#define NUM_MBUFS (4096-1)

#define BURST_SIZE	32

#define RING_SIZE	1024

#define UDP_APP_RECV_BUFFER_SIZE	128

#define TIMER_RESOLUTION_CYCLES 120000000000ULL // 10ms * 1000 = 10s * 6

struct inout_ring {

	struct rte_ring* in;
	struct rte_ring* out;
};

static struct inout_ring* ioInst = NULL;

static struct inout_ring* inout_ring_instance(void) {

	if(ioInst == NULL) {

		ioInst = rte_malloc("inout ring", sizeof(struct inout_ring), 0);
		memset(ioInst, 0, sizeof(struct inout_ring));
	}

	return ioInst;
}


#if ENABLE_SEND

#define MAKE_IPV4_ADDR(a, b, c, d) (a + (b<<8) + (c<<16) + (d<<24))

static uint32_t gLocalIp = MAKE_IPV4_ADDR(172, 26, 34, 243);

static uint32_t gSrcIp; //
static uint32_t gDstIp;

static uint8_t gSrcMac[RTE_ETHER_ADDR_LEN];
//static uint8_t gDstMac[RTE_ETHER_ADDR_LEN];

static uint16_t gSrcPort;
static uint16_t gDstPort;

#endif

#if ENABLE_ARP_REPLY

static uint8_t gDefaultArpMac[RTE_ETHER_ADDR_LEN] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};

#endif




int gDpdkPortId = 0;



static const struct rte_eth_conf port_conf_default = {
	.rxmode = {.max_rx_pkt_len = RTE_ETHER_MAX_LEN }
};

int udp_process(struct rte_mbuf* udpmbuf);


static void ng_init_port(struct rte_mempool *mbuf_pool) {

	uint16_t nb_sys_ports= rte_eth_dev_count_avail(); //
	if (nb_sys_ports == 0) {
		rte_exit(EXIT_FAILURE, "No Supported eth found\n");
	}

	struct rte_eth_dev_info dev_info;
	rte_eth_dev_info_get(gDpdkPortId, &dev_info); //
	
	const int num_rx_queues = 1;
	const int num_tx_queues = 1;
	struct rte_eth_conf port_conf = port_conf_default;
	rte_eth_dev_configure(gDpdkPortId, num_rx_queues, num_tx_queues, &port_conf);


	if (rte_eth_rx_queue_setup(gDpdkPortId, 0 , 1024, 
		rte_eth_dev_socket_id(gDpdkPortId),NULL, mbuf_pool) < 0) {

		rte_exit(EXIT_FAILURE, "Could not setup RX queue\n");

	}
	
#if ENABLE_SEND
	struct rte_eth_txconf txq_conf = dev_info.default_txconf;
	txq_conf.offloads = port_conf.rxmode.offloads;
	if (rte_eth_tx_queue_setup(gDpdkPortId, 0 , 1024, 
		rte_eth_dev_socket_id(gDpdkPortId), &txq_conf) < 0) {
		
		rte_exit(EXIT_FAILURE, "Could not setup TX queue\n");
		
	}
#endif

	if (rte_eth_dev_start(gDpdkPortId) < 0 ) {
		rte_exit(EXIT_FAILURE, "Could not start\n");
	}

	

}


static int ng_encode_udp_pkt(uint8_t *msg, uint32_t sip, uint32_t dip, uint16_t sport, uint16_t dport, uint8_t* smac, uint8_t* dmac, unsigned char *data, uint16_t total_len) {

	// encode 

	// 1 ethhdr
	struct rte_ether_hdr *eth = (struct rte_ether_hdr *)msg;
	rte_memcpy(eth->s_addr.addr_bytes, smac, RTE_ETHER_ADDR_LEN);
	rte_memcpy(eth->d_addr.addr_bytes, dmac, RTE_ETHER_ADDR_LEN);
	eth->ether_type = htons(RTE_ETHER_TYPE_IPV4);
	

	// 2 iphdr 
	struct rte_ipv4_hdr *ip = (struct rte_ipv4_hdr *)(msg + sizeof(struct rte_ether_hdr));
	ip->version_ihl = 0x45;
	ip->type_of_service = 0;
	ip->total_length = htons(total_len - sizeof(struct rte_ether_hdr));
	ip->packet_id = 0;
	ip->fragment_offset = 0;
	ip->time_to_live = 64; // ttl = 64
	ip->next_proto_id = IPPROTO_UDP;
	ip->src_addr = sip;
	ip->dst_addr = dip;
	
	ip->hdr_checksum = 0;
	ip->hdr_checksum = rte_ipv4_cksum(ip);

	// 3 udphdr 

	struct rte_udp_hdr *udp = (struct rte_udp_hdr *)(msg + sizeof(struct rte_ether_hdr) + sizeof(struct rte_ipv4_hdr));
	udp->src_port = sport;
	udp->dst_port = dport;
	uint16_t udplen = total_len - sizeof(struct rte_ether_hdr) - sizeof(struct rte_ipv4_hdr);
	udp->dgram_len = htons(udplen);

	rte_memcpy((uint8_t*)(udp+1), data, udplen);

	udp->dgram_cksum = 0;
	udp->dgram_cksum = rte_ipv4_udptcp_cksum(ip, udp);

	struct in_addr addr;
	addr.s_addr = gSrcIp;
	printf(" --> src: %s:%d, ", inet_ntoa(addr), ntohs(gSrcPort));

	addr.s_addr = gDstIp;
	printf("dst: %s:%d\n", inet_ntoa(addr), ntohs(gDstPort));

	return 0;
}


static struct rte_mbuf * ng_send_udp(struct rte_mempool *mbuf_pool, uint32_t sip, uint32_t dip, uint16_t sport, uint16_t dport, uint8_t* smac, uint8_t* dmac, uint8_t *data, uint16_t length) {

	// mempool --> mbuf

	const unsigned total_len = length + 42;

	struct rte_mbuf *mbuf = rte_pktmbuf_alloc(mbuf_pool);
	if (!mbuf) {
		rte_exit(EXIT_FAILURE, "rte_pktmbuf_alloc udp\n");
	}
	mbuf->pkt_len = total_len;
	mbuf->data_len = total_len;

	uint8_t *pktdata = rte_pktmbuf_mtod(mbuf, uint8_t*);

	ng_encode_udp_pkt(pktdata, sip, dip, sport, dport, smac, dmac, data, total_len);

	return mbuf;

}



#if ENABLE_ARP


static int ng_encode_arp_pkt(uint8_t *msg, uint16_t opcode, uint8_t *dst_mac, uint32_t sip, uint32_t dip) {

	// 1 ethhdr
	struct rte_ether_hdr *eth = (struct rte_ether_hdr *)msg;
	rte_memcpy(eth->s_addr.addr_bytes, gSrcMac, RTE_ETHER_ADDR_LEN);
	if (!strncmp((const char *)dst_mac, (const char *)gDefaultArpMac, RTE_ETHER_ADDR_LEN)) {
		uint8_t mac[RTE_ETHER_ADDR_LEN] = {0x0};
		rte_memcpy(eth->d_addr.addr_bytes, mac, RTE_ETHER_ADDR_LEN);
	} else {
		rte_memcpy(eth->d_addr.addr_bytes, dst_mac, RTE_ETHER_ADDR_LEN);
	}
	eth->ether_type = htons(RTE_ETHER_TYPE_ARP);

	// 2 arp 
	struct rte_arp_hdr *arp = (struct rte_arp_hdr *)(eth + 1);
	arp->arp_hardware = htons(1);
	arp->arp_protocol = htons(RTE_ETHER_TYPE_IPV4);
	arp->arp_hlen = RTE_ETHER_ADDR_LEN;
	arp->arp_plen = sizeof(uint32_t);
	arp->arp_opcode = htons(opcode);

	rte_memcpy(arp->arp_data.arp_sha.addr_bytes, gSrcMac, RTE_ETHER_ADDR_LEN);
	rte_memcpy( arp->arp_data.arp_tha.addr_bytes, dst_mac, RTE_ETHER_ADDR_LEN);

	arp->arp_data.arp_sip = sip;
	arp->arp_data.arp_tip = dip;
	
	return 0;

}

static struct rte_mbuf *ng_send_arp(struct rte_mempool *mbuf_pool, uint16_t opcode, uint8_t *dst_mac, uint32_t sip, uint32_t dip) {

	const unsigned total_length = sizeof(struct rte_ether_hdr) + sizeof(struct rte_arp_hdr);

	struct rte_mbuf *mbuf = rte_pktmbuf_alloc(mbuf_pool);
	if (!mbuf) {
		rte_exit(EXIT_FAILURE, "rte_pktmbuf_alloc arp\n");
	}

	mbuf->pkt_len = total_length;
	mbuf->data_len = total_length;

	uint8_t *pkt_data = rte_pktmbuf_mtod(mbuf, uint8_t *);
	ng_encode_arp_pkt(pkt_data, opcode, dst_mac, sip, dip);

	return mbuf;
}

#endif


#if ENABLE_ICMP


static uint16_t ng_checksum(uint16_t *addr, int count) {

	register long sum = 0;

	while (count > 1) {

		sum += *(unsigned short*)addr++;
		count -= 2;
	
	}

	if (count > 0) {
		sum += *(unsigned char *)addr;
	}

	while (sum >> 16) {
		sum = (sum & 0xffff) + (sum >> 16);
	}

	return ~sum;
}

static int ng_encode_icmp_pkt(uint8_t *msg, uint8_t *dst_mac,
		uint32_t sip, uint32_t dip, uint16_t id, uint16_t seqnb) {

	// 1 ether
	struct rte_ether_hdr *eth = (struct rte_ether_hdr *)msg;
	rte_memcpy(eth->s_addr.addr_bytes, gSrcMac, RTE_ETHER_ADDR_LEN);
	rte_memcpy(eth->d_addr.addr_bytes, dst_mac, RTE_ETHER_ADDR_LEN);
	eth->ether_type = htons(RTE_ETHER_TYPE_IPV4);

	// 2 ip
	struct rte_ipv4_hdr *ip = (struct rte_ipv4_hdr *)(msg + sizeof(struct rte_ether_hdr));
	ip->version_ihl = 0x45;
	ip->type_of_service = 0;
	ip->total_length = htons(sizeof(struct rte_ipv4_hdr) + sizeof(struct rte_icmp_hdr));
	ip->packet_id = 0;
	ip->fragment_offset = 0;
	ip->time_to_live = 64; // ttl = 64
	ip->next_proto_id = IPPROTO_ICMP;
	ip->src_addr = sip;
	ip->dst_addr = dip;
	
	ip->hdr_checksum = 0;
	ip->hdr_checksum = rte_ipv4_cksum(ip);

	// 3 icmp 
	struct rte_icmp_hdr *icmp = (struct rte_icmp_hdr *)(msg + sizeof(struct rte_ether_hdr) + sizeof(struct rte_ipv4_hdr));
	icmp->icmp_type = RTE_IP_ICMP_ECHO_REPLY;
	icmp->icmp_code = 0;
	icmp->icmp_ident = id;
	icmp->icmp_seq_nb = seqnb;

	icmp->icmp_cksum = 0;
	icmp->icmp_cksum = ng_checksum((uint16_t*)icmp, sizeof(struct rte_icmp_hdr));

	return 0;
}


static struct rte_mbuf *ng_send_icmp(struct rte_mempool *mbuf_pool, uint8_t *dst_mac,
		uint32_t sip, uint32_t dip, uint16_t id, uint16_t seqnb) {

	const unsigned total_length = sizeof(struct rte_ether_hdr) + sizeof(struct rte_ipv4_hdr) + sizeof(struct rte_icmp_hdr);

	struct rte_mbuf *mbuf = rte_pktmbuf_alloc(mbuf_pool);
	if (!mbuf) {
		rte_exit(EXIT_FAILURE, "rte_pktmbuf_alloc icmp\n");
	}

	
	mbuf->pkt_len = total_length;
	mbuf->data_len = total_length;

	uint8_t *pkt_data = rte_pktmbuf_mtod(mbuf, uint8_t *);
	ng_encode_icmp_pkt(pkt_data, dst_mac, sip, dip, id, seqnb);

	return mbuf;

}


#endif

static void 
print_ethaddr(const char *name, const struct rte_ether_addr *eth_addr)
{
	char buf[RTE_ETHER_ADDR_FMT_SIZE];
	rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr);
	printf("%s%s", name, buf);
}


#if ENABLE_TIMER

static void
arp_request_timer_cb(__attribute__((unused)) struct rte_timer *tim,
	   void *arg) {

	struct rte_mempool *mbuf_pool = (struct rte_mempool *)arg;

#if 0
	struct rte_mbuf *arpbuf = ng_send_arp(mbuf_pool, RTE_ARP_OP_REQUEST, ahdr->arp_data.arp_sha.addr_bytes, 
		ahdr->arp_data.arp_tip, ahdr->arp_data.arp_sip);

	rte_eth_tx_burst(gDpdkPortId, 0, &arpbuf, 1);
	rte_pktmbuf_free(arpbuf);

#endif
	
	int i = 0;
	for (i = 1;i <= 254;i ++) {

		uint32_t dstip = (gLocalIp & 0x00FFFFFF) | (0xFF000000 & (i << 24));

		struct in_addr addr;
		addr.s_addr = dstip;
		printf("arp ---> src: %s \n", inet_ntoa(addr));

		struct rte_mbuf *arpbuf = NULL;
		uint8_t *dstmac = ng_get_dst_macaddr(dstip);
		if (dstmac == NULL) {

			arpbuf = ng_send_arp(mbuf_pool, RTE_ARP_OP_REQUEST, gDefaultArpMac, gLocalIp, dstip);
		
		} else {

			arpbuf = ng_send_arp(mbuf_pool, RTE_ARP_OP_REQUEST, dstmac, gLocalIp, dstip);
		}

		rte_eth_tx_burst(gDpdkPortId, 0, &arpbuf, 1);
		rte_pktmbuf_free(arpbuf);
		
	}
	
}


#endif

static int udp_out(struct rte_mempool* mbuf_pool);
static int ln_tcp_out(struct rte_mempool* mbuf_pool);
static int ln_tcp_process(struct rte_mbuf* tcpmbuf);

static int pkt_process(void* arg) {

	struct rte_mempool* mbuf_pool = (struct rte_mempool*)arg;
	struct inout_ring* ring = inout_ring_instance();

	while(1) {

		struct rte_mbuf *mbufs[BURST_SIZE];
		unsigned num_recvd = rte_ring_mc_dequeue_burst(ring->in, (void**)mbufs, BURST_SIZE, NULL);

		unsigned i = 0;
		for (i = 0;i < num_recvd;i++) {

			struct rte_ether_hdr *ehdr = rte_pktmbuf_mtod(mbufs[i], struct rte_ether_hdr*);

#if ENABLE_ARP

			if (ehdr->ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_ARP)) {

				struct rte_arp_hdr *ahdr = rte_pktmbuf_mtod_offset(mbufs[i], 
					struct rte_arp_hdr *, sizeof(struct rte_ether_hdr));

				
				struct in_addr addr;
				addr.s_addr = ahdr->arp_data.arp_tip;
				printf("arp ---> src: %s ", inet_ntoa(addr));

				addr.s_addr = gLocalIp;
				printf(" local: %s \n", inet_ntoa(addr));

				if (ahdr->arp_data.arp_tip == gLocalIp) {

					if (ahdr->arp_opcode == rte_cpu_to_be_16(RTE_ARP_OP_REQUEST)) {

						printf("arp --> request\n");

						struct rte_mbuf *arpbuf = ng_send_arp(mbuf_pool, RTE_ARP_OP_REPLY, ahdr->arp_data.arp_sha.addr_bytes, 
							ahdr->arp_data.arp_tip, ahdr->arp_data.arp_sip);

						//rte_eth_tx_burst(gDpdkPortId, 0, &arpbuf, 1);
						//rte_pktmbuf_free(arpbuf);
						rte_ring_mp_enqueue_burst(ring->out, (void**)&arpbuf, 1, NULL);

					} else if (ahdr->arp_opcode == rte_cpu_to_be_16(RTE_ARP_OP_REPLY)) {

						printf("arp --> reply\n");

						struct arp_table *table = arp_table_instance();

						uint8_t *hwaddr = ng_get_dst_macaddr(ahdr->arp_data.arp_sip);
						if (hwaddr == NULL) {

							struct arp_entry *entry = rte_malloc("arp_entry",sizeof(struct arp_entry), 0);
							if (entry) {
								memset(entry, 0, sizeof(struct arp_entry));

								entry->ip = ahdr->arp_data.arp_sip;
								rte_memcpy(entry->hwaddr, ahdr->arp_data.arp_sha.addr_bytes, RTE_ETHER_ADDR_LEN);
								entry->type = 0;
								
								LL_ADD(entry, table->entries);
								table->count ++;
							}

						}
#if ENABLE_DEBUG
						struct arp_entry *iter;
						for (iter = table->entries; iter != NULL; iter = iter->next) {
					
							struct in_addr addr;
							addr.s_addr = iter->ip;

							print_ethaddr("arp table --> mac: ", (struct rte_ether_addr *)iter->hwaddr);
								
							printf(" ip: %s \n", inet_ntoa(addr));
					
						}
#endif
						rte_pktmbuf_free(mbufs[i]);
					}
				
					continue;
				} 
			}
#endif

			if (ehdr->ether_type != rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4)) {
				continue;
			}

			struct rte_ipv4_hdr *iphdr =  rte_pktmbuf_mtod_offset(mbufs[i], struct rte_ipv4_hdr *, 
				sizeof(struct rte_ether_hdr));
			
			if (iphdr->next_proto_id == IPPROTO_UDP) {

				udp_process(mbufs[i]);
			}

			if(iphdr->next_proto_id == IPPROTO_TCP) {

				ln_tcp_process(mbufs[i]);
			}

#if ENABLE_ICMP

			if (iphdr->next_proto_id == IPPROTO_ICMP) {

				struct rte_icmp_hdr *icmphdr = (struct rte_icmp_hdr *)(iphdr + 1);

				
				struct in_addr addr;
				addr.s_addr = iphdr->src_addr;
				printf("icmp ---> src: %s ", inet_ntoa(addr));

				
				if (icmphdr->icmp_type == RTE_IP_ICMP_ECHO_REQUEST) {

					addr.s_addr = iphdr->dst_addr;
					printf(" local: %s , type : %d\n", inet_ntoa(addr), icmphdr->icmp_type);
				

					struct rte_mbuf *txbuf = ng_send_icmp(mbuf_pool, ehdr->s_addr.addr_bytes,
						iphdr->dst_addr, iphdr->src_addr, icmphdr->icmp_ident, icmphdr->icmp_seq_nb);

					//rte_eth_tx_burst(gDpdkPortId, 0, &txbuf, 1);
					//rte_pktmbuf_free(txbuf);
					rte_ring_mp_enqueue_burst(ring->out, (void**)&txbuf, 1, NULL);

					rte_pktmbuf_free(mbufs[i]);
				}
				

			}

#endif
			
		}

		udp_out(mbuf_pool);
		ln_tcp_out(mbuf_pool);
	}


	return 0;
}



struct localhost {

	int fd;

	uint32_t localip;
	uint8_t localmac[RTE_ETHER_ADDR_LEN];
	uint16_t localport;
	uint8_t proto;

	struct rte_ring* recv_buf;
	struct rte_ring* send_buf;

	struct localhost* prev;
	struct localhost* next;

	pthread_mutex_t mutex;
	pthread_cond_t cond;
};

struct localhost* lhost = NULL;


#define DEFAULT_FD 3

static int get_fd_frombitmap(void) {

	int fd = DEFAULT_FD;
	return fd;
}


static struct localhost* get_host_fromfd(int fd) {

	struct localhost* host = lhost;

	for(host = lhost; host != NULL; host = host->next) {

		if(host->fd == fd)
			return host;
	}

	return NULL;
};


static struct localhost* get_host_fromport(uint32_t dip, uint16_t port, uint8_t proto) {

	struct localhost* host = lhost;

	for(host = lhost; host != NULL; host = host->next) {

		if(host->localip == dip && host->localport == port && host->proto == proto)
			return host;
	}

	return NULL;
}

struct offload {

	uint32_t sip;
	uint32_t dip;

	uint16_t sport;
	uint16_t dport;

	uint8_t proto;

	uint8_t* data;
	uint16_t length;
};


int udp_process(struct rte_mbuf* udpmbuf) {

	struct rte_ipv4_hdr* ip = rte_pktmbuf_mtod_offset(udpmbuf, struct rte_ipv4_hdr*, sizeof(struct rte_ether_hdr));

	struct rte_udp_hdr* udp = (struct rte_udp_hdr*)(ip + 1);

	struct localhost* host = get_host_fromport(ip->dst_addr, udp->dst_port, ip->next_proto_id);
	if(host == NULL) {

		rte_pktmbuf_free(udpmbuf);
		return -3;
	}

	struct offload* ol = rte_malloc("udp ol", sizeof(struct offload), 0);
	if(ol == NULL) {

		rte_pktmbuf_free(udpmbuf);
		return -2;
	}
	
	ol->sip = ip->src_addr;
	ol->dip = ip->dst_addr;
	ol->sport = udp->src_port;
	ol->dport = udp->dst_port;
	ol->proto = IPPROTO_UDP;
	ol->length = ntohs(udp->dgram_len);

	ol->data = rte_malloc("ol data", ol->length - sizeof(struct rte_udp_hdr), 0);
	if(ol->data == NULL) {

		rte_pktmbuf_free(udpmbuf);
		rte_free(ol);
		return -1;
	}
	rte_memcpy(ol->data, (uint8_t*)(udp + 1), ol->length - sizeof(struct rte_udp_hdr));

	rte_ring_mp_enqueue(host->recv_buf, ol);

	pthread_mutex_lock(&host->mutex);
	pthread_cond_signal(&host->cond);
	pthread_mutex_unlock(&host->mutex);

	return 0;
}

static int udp_out(struct rte_mempool* mbuf_pool) {

	struct localhost* host;
	for(host = lhost; host != NULL; host = host->next) {

		struct offload* ol;
		int nb_send = rte_ring_mc_dequeue(host->send_buf, (void**)&ol);
		if(nb_send < 0)
			continue;

		struct in_addr addr;
		addr.s_addr = ol->dip;
		printf("udp_out --> src: %s:%d\n", inet_ntoa(addr), ntohs(ol->dport));
		uint8_t* dstmac = ng_get_dst_macaddr(ol->dip);
		if(dstmac == NULL) {

			struct rte_mbuf* arpbuf = ng_send_arp(mbuf_pool, RTE_ARP_OP_REQUEST, gDefaultArpMac, ol->sip, ol->dip);

			struct inout_ring* ring = inout_ring_instance();
			rte_ring_mp_enqueue_burst(ring->out, (void**)&arpbuf, 1, NULL);
			rte_ring_mp_enqueue(host->send_buf, ol);
		}
		else {

			struct rte_mbuf* udpbuf = ng_send_udp(mbuf_pool, ol->sip, ol->dip, ol->sport, ol->dport, host->localmac, dstmac, ol->data, ol->length);

			struct inout_ring* ring = inout_ring_instance();
			rte_ring_mp_enqueue_burst(ring->out, (void**)&udpbuf, 1, NULL);
		}
	}

	return 0;
}


static int nsocket(__attribute__((unused)) int domain, int type, __attribute__((unused)) int protocol) {

	int fd = get_fd_frombitmap();

	struct localhost* host = rte_malloc("localhost", sizeof(struct localhost), 0);
	if(host == NULL) {

		return -1;
	}
	memset(host, 0, sizeof(struct localhost));

	host->fd = fd;

	if(type == SOCK_DGRAM)
		host->proto = IPPROTO_UDP;

	host->send_buf = rte_ring_create("send buffer", RING_SIZE, rte_socket_id(), RING_F_SP_ENQ | RING_F_SC_DEQ);
	if(host->send_buf == NULL) {

		rte_free(host);
		return -1;
	}

	host->recv_buf = rte_ring_create("recv buffer", RING_SIZE, rte_socket_id(), RING_F_SC_DEQ | RING_F_SP_ENQ);
	if(host->recv_buf == NULL) {

		rte_ring_free(host->send_buf);
		rte_free(host);
		return -1;
	}

	pthread_cond_t blank_cond = PTHREAD_COND_INITIALIZER;
	pthread_mutex_t blank_mutex = PTHREAD_MUTEX_INITIALIZER;

	rte_memcpy(&host->cond, &blank_cond, sizeof(pthread_cond_t));
	rte_memcpy(&host->mutex, &blank_mutex, sizeof(pthread_mutex_t));

	LL_ADD(host, lhost);

	return fd;
	
}

static int nbind(int sockfd, const struct sockaddr *addr, __attribute__((unused))socklen_t addrlen) {

	struct localhost* host = get_host_fromfd(sockfd);
	if(host == NULL) {

		return -1;
	}

	const struct sockaddr_in* addr_in = (const struct sockaddr_in*)addr;
	host->localport = addr_in->sin_port;
	rte_memcpy(&host->localip, &addr_in->sin_addr.s_addr, sizeof(uint32_t));
	rte_memcpy(host->localmac, gSrcMac, RTE_ETHER_ADDR_LEN);

	return 0;
}

static ssize_t nrecvfrom(int sockfd, void *buf, size_t len, __attribute__((unused))int flags, 
		struct sockaddr *src_addr, __attribute__((unused))socklen_t *addrlen) {

	struct localhost* host = get_host_fromfd(sockfd);
	if(host == NULL) {

		return -1;
	}

	struct offload* ol = NULL;
	uint8_t* ptr = NULL;

	struct sockaddr_in* addr_in = (struct sockaddr_in*)src_addr;

	int nb = -1;
	pthread_mutex_lock(&host->mutex);
	while((nb = rte_ring_mc_dequeue(host->recv_buf, (void**)&ol)) < 0) {

		pthread_cond_wait(&host->cond, &host->mutex);
	}
	pthread_mutex_unlock(&host->mutex);

	addr_in->sin_port = ol->sport;
	rte_memcpy(&addr_in->sin_addr.s_addr, &ol->sip, sizeof(uint32_t));

	if(len < ol->length) {

		rte_memcpy(buf, ol->data, len);

		ptr = rte_malloc("ptr", ol->length - len, 0);
		rte_memcpy(ptr, ol->data + len, ol->length - len);

		ol->length -= len;
		rte_free(ol->data);
		ol->data = ptr;

		rte_ring_mp_enqueue(host->recv_buf, ol);

		return len;
	}
	else {
		uint16_t length = ol->length;
		rte_memcpy(buf, ol->data, ol->length);

		rte_free(ol->data);
		rte_free(ol);

		return length;
	}
}


static ssize_t nsendto(int sockfd, const void *buf, size_t len, __attribute__((unused))int flags,
                      const struct sockaddr *dest_addr, __attribute__((unused))socklen_t addrlen) {

	struct localhost* host = get_host_fromfd(sockfd);
	if(host == NULL) {

		return -1;
	}

	const struct sockaddr_in* addr_in = (const struct sockaddr_in*)dest_addr;

	struct offload* ol = rte_malloc("ol", sizeof(struct offload), 0);
	if(ol == NULL) {

		return -1;
	}
	ol->dport = addr_in->sin_port;
	ol->sport = host->localport;
	ol->dip = addr_in->sin_addr.s_addr;
	ol->sip = host->localip;
	ol->length = len;

	ol->data = rte_malloc("data", len, 0);
	if(ol->data == NULL) {

		rte_free(ol);
		return -1;
	}

	rte_memcpy(ol->data, buf, len);

	rte_ring_mp_enqueue(host->send_buf, ol);

	return len;
}


static int nclose(int fd) {

	struct localhost* host = get_host_fromfd(fd);
	if(host == NULL) {

		return -1;
	}

	LL_REMOVE(host, lhost);

	if(host->send_buf) {
	
		rte_ring_free(host->send_buf);
	}
	if(host->recv_buf) {

		rte_ring_free(host->recv_buf);
	}

	rte_free(host);

	return 0;
}

static int udp_server_entry(__attribute__((unused))  void *arg) {

	int connfd = nsocket(AF_INET, SOCK_DGRAM, 0);
	if (connfd == -1) {
		printf("sockfd failed\n");
		return -1;
	} 

	struct sockaddr_in localaddr, clientaddr; // struct sockaddr 
	memset(&localaddr, 0, sizeof(struct sockaddr_in));

	localaddr.sin_port = htons(8889);
	localaddr.sin_family = AF_INET;
	localaddr.sin_addr.s_addr = inet_addr("192.168.1.184"); // 0.0.0.0
	

	nbind(connfd, (struct sockaddr*)&localaddr, sizeof(localaddr));

	char buffer[UDP_APP_RECV_BUFFER_SIZE] = {0};
	socklen_t addrlen = sizeof(clientaddr);
	while (1) {

		if (nrecvfrom(connfd, buffer, UDP_APP_RECV_BUFFER_SIZE, 0, 
			(struct sockaddr*)&clientaddr, &addrlen) < 0) {

			continue;

		} 
		else {

			printf("recv from %s:%d, data:%s\n", inet_ntoa(clientaddr.sin_addr), 
				ntohs(clientaddr.sin_port), buffer);
			nsendto(connfd, buffer, strlen(buffer), 0, 
				(struct sockaddr*)&clientaddr, sizeof(clientaddr));
		}

	}

	nclose(connfd);

}


#define TCP_OPTION_LENGTH	10
#define TCP_MAX_SEQ		4294967295
#define TCP_INITIAL_WINDOW	14600


typedef enum _LN_TCP_STATUS {
	LN_TCP_STATUS_CLOSED = 0,
	LN_TCP_STATUS_LISTEN,
	LN_TCP_STATUS_SYN_RECV,
	LN_TCP_STATUS_SYN_SEND,
	LN_TCP_STATUS_ESTABLELISTEN,

	LN_TCP_STATUS_FIN_WAIT_1,
	LN_TCP_STATUS_FIN_WAIT_2,
	LN_TCP_STATUS_CLOSEING,
	LN_TCP_STATUS_TIME_WAIT,

	LN_TCP_STATUS_CLOSE_WAIT,
	LN_TCP_STATUS_LAST_ACK,
} LN_TCP_STATUS;

struct ln_tcp_stream {

	int fd;

	uint32_t sip;
	uint32_t dip;

	uint16_t sport;
	uint16_t dport;

	uint16_t proto;

	uint8_t localmac[RTE_ETHER_ADDR_LEN];

	uint32_t snd_nxt;
	uint32_t rev_nxt;

	LN_TCP_STATUS status;

	struct rte_ring* snd_buf;
	struct rte_ring* rev_buf;

	struct ln_tcp_stream* prev;
	struct ln_tcp_stream* next;
};

struct ln_tcp_table {

	int count;
	struct ln_tcp_stream* streams;
};

struct ln_tcp_fragment {

	uint16_t sport;
	uint16_t dport;
	uint32_t seqnum;
	uint32_t acknum;
	uint8_t  hdrlen_off;
	uint8_t  tcp_flags;
	uint16_t windows;
	uint16_t cksum;
	uint16_t tcp_urp;

	int optlen;
	uint32_t option[TCP_OPTION_LENGTH];

	uint8_t* data;
	int length;
};

struct ln_tcp_table* tcpt = NULL;

static struct ln_tcp_table* ln_tcp_instance(void) {

	if(tcpt == NULL) {
		tcpt = rte_malloc("tcpt", sizeof(struct ln_tcp_table), 0);
		if(!tcpt) {

			rte_exit(EXIT_FAILURE, "Error with malloc tcpt");
		}

		memset(tcpt, 0, sizeof(struct ln_tcp_table));
	}

	return tcpt;
}

static struct ln_tcp_stream* ln_tcp_stream_search(uint32_t sip, uint32_t dip, uint16_t sport, uint16_t dport) {

	struct ln_tcp_table* table = ln_tcp_instance();
	struct ln_tcp_stream* iter;
	
	for(iter = table->streams; iter != NULL; iter = iter->next) {

		if(iter->dip == dip && iter->sip == sip && iter->sport == sport && iter->dport == dport) {
			
			return iter;
		}
	}

	return NULL;
}

static struct ln_tcp_stream* ln_tcp_stream_create(uint32_t sip, uint32_t dip, uint32_t sport, uint32_t dport) {

	struct ln_tcp_stream* stream = rte_malloc("ln_tcp_stream", sizeof(struct ln_tcp_stream), 0);
	if(!stream) return NULL;

	stream->sip = sip;
	stream->dip = dip;
	stream->sport = sport;
	stream->dport = dport;
	stream->proto = IPPROTO_TCP;
	stream->status = LN_TCP_STATUS_LISTEN;

	uint32_t next_seed = time(NULL);
	stream->snd_nxt = rand_r(&next_seed) % TCP_MAX_SEQ;

	stream->rev_buf = rte_ring_create("tcp_rev_ring", RING_SIZE, rte_socket_id(), 0);
	stream->snd_buf = rte_ring_create("tcp_snd_ring", RING_SIZE, rte_socket_id(), 0);

	rte_memcpy(stream->localmac, gSrcMac, RTE_ETHER_ADDR_LEN);

	struct ln_tcp_table* table = ln_tcp_instance();
	LL_ADD(stream, table->streams);
	table->count++;

	return stream;
}

static int ln_tcp_handle_listen(struct ln_tcp_stream* stream, struct rte_tcp_hdr* hdr) {

	if(hdr->tcp_flags & RTE_TCP_SYN_FLAG) {

		if(stream->status == LN_TCP_STATUS_LISTEN) {

			struct ln_tcp_fragment* fragment = rte_malloc("tcp_fragment", sizeof(struct ln_tcp_fragment), 0);
			if(!fragment) {

				return -1;
			}
			memset(fragment, 0, sizeof(struct ln_tcp_fragment));
			
			fragment->sport = hdr->dst_port;
			fragment->dport = hdr->src_port;

			struct in_addr addr;
			addr.s_addr = stream->sip;
			printf("tcp --> src: %s:%d ", inet_ntoa(addr), ntohs(hdr->src_port));

			addr.s_addr = stream->dip;
			printf("  --> dst: %s:%d\n", inet_ntoa(addr), ntohs(hdr->dst_port));

			fragment->seqnum = stream->snd_nxt;
			printf("before get ack\n");
			fragment->acknum = ntohl(hdr->sent_seq) + 1;
			printf("before get flags\n");
			fragment->tcp_flags = (RTE_TCP_ACK_FLAG | RTE_TCP_SYN_FLAG);
			
			fragment->windows = TCP_INITIAL_WINDOW;
			fragment->hdrlen_off = 0x50;

			fragment->data = NULL;
			fragment->length = 0;
			rte_ring_mp_enqueue(stream->snd_buf, fragment);
			stream->status = LN_TCP_STATUS_SYN_RECV;
		}
	}


	return 0;
}

static int ln_tcp_handle_syn_recv(struct ln_tcp_stream* stream, struct rte_tcp_hdr* hdr) {

	if(hdr->tcp_flags & RTE_TCP_ACK_FLAG) {

		if(stream->status == LN_TCP_STATUS_SYN_RECV) {

			uint32_t ack = ntohl(hdr->recv_ack);
			if(ack == stream->snd_nxt + 1) {

				
			}

			stream->status = LN_TCP_STATUS_ESTABLELISTEN;
		}
	}

	return 0;
}

static int ln_tcp_process(struct rte_mbuf* tcpmbuf) {

	printf("ln_tcp_process\n");
	struct rte_ipv4_hdr* iphdr = rte_pktmbuf_mtod_offset(tcpmbuf, struct rte_ipv4_hdr*, sizeof(struct rte_ether_hdr));
	struct rte_tcp_hdr* tcphdr = (struct rte_tcp_hdr*)(iphdr + 1);
#if 1
	uint16_t tcpcksum = tcphdr->cksum;
	tcphdr->cksum = 0;
	uint16_t cksum = rte_ipv4_udptcp_cksum(iphdr, tcphdr);

	if(tcpcksum != cksum) {

		printf("cksum: %x, tcp cksum: %x\n", cksum, tcpcksum);
		return -1;
	}
#endif
	struct ln_tcp_stream* stream = ln_tcp_stream_search(iphdr->src_addr, iphdr->dst_addr, tcphdr->src_port, tcphdr->dst_port);
	if(stream == NULL) {

		stream = ln_tcp_stream_create(iphdr->src_addr, iphdr->dst_addr, tcphdr->src_port, tcphdr->dst_port);
		
		if(stream == NULL)
			return -2;
	}
	switch(stream->status) {

		case LN_TCP_STATUS_CLOSED:
			break;
		case LN_TCP_STATUS_LISTEN:
			printf("listen\n");
			ln_tcp_handle_listen(stream, tcphdr);
			break;
		case LN_TCP_STATUS_SYN_RECV:
			printf("recv\n");
			ln_tcp_handle_syn_recv(stream, tcphdr);
			break;
		case LN_TCP_STATUS_SYN_SEND:
			break;
		case LN_TCP_STATUS_ESTABLELISTEN:
		{
			printf("establelisten\n");
			uint8_t hdrlen = (tcphdr->data_off & 0xF0);
			//hdrlen >= 4;
			uint8_t* offload = (uint8_t*)(tcphdr + 1) + hdrlen * 4;
			printf("offload: %s\n", offload);
			break;
		}
		case LN_TCP_STATUS_FIN_WAIT_1:
			break;
		case LN_TCP_STATUS_FIN_WAIT_2:
			break;
		case LN_TCP_STATUS_CLOSEING:
			break;
		case LN_TCP_STATUS_TIME_WAIT:
			break;
		case LN_TCP_STATUS_CLOSE_WAIT:
			break;
		case LN_TCP_STATUS_LAST_ACK:
			break;
	}

	return 0;
}

static int ln_encode_tcp_pkt(uint8_t* msg, uint32_t sip, uint32_t dip, uint8_t* smac, uint8_t* dmac, struct ln_tcp_fragment* fragment) {

	printf("ln_encode_tcp_pkt\n");
	uint16_t hdr_len = sizeof(struct rte_ether_hdr) + sizeof(struct rte_ipv4_hdr) + sizeof(struct rte_tcp_hdr);
	uint16_t total_len = fragment->length + hdr_len + fragment->optlen * sizeof(uint32_t);

	struct rte_ether_hdr* ethhdr = (struct rte_ether_hdr*)msg;
	rte_memcpy(ethhdr->s_addr.addr_bytes, smac, RTE_ETHER_ADDR_LEN);
	rte_memcpy(ethhdr->d_addr.addr_bytes, dmac, RTE_ETHER_ADDR_LEN);
	ethhdr->ether_type = htons(RTE_ETHER_TYPE_IPV4);

	struct rte_ipv4_hdr* iphdr = (struct rte_ipv4_hdr*)(ethhdr + 1);
	iphdr->version_ihl = 0x45;
	iphdr->time_to_live = 64;
	iphdr->src_addr = sip;
	iphdr->dst_addr = dip;
	iphdr->next_proto_id = IPPROTO_TCP;
	iphdr->fragment_offset = 0;
	iphdr->total_length = htons(total_len - sizeof(struct rte_ether_hdr));
	iphdr->packet_id = 0;
	iphdr->type_of_service = 0;
	iphdr->hdr_checksum = 0;
	iphdr->hdr_checksum = rte_ipv4_cksum(iphdr);

	struct rte_tcp_hdr* tcphdr = (struct rte_tcp_hdr*)(iphdr + 1);
	tcphdr->src_port = fragment->sport;
	tcphdr->dst_port = fragment->dport;
	tcphdr->recv_ack = htonl(fragment->acknum);
	tcphdr->sent_seq = htonl(fragment->seqnum);
	tcphdr->data_off = fragment->hdrlen_off;
	tcphdr->rx_win = fragment->windows;
	tcphdr->tcp_flags = fragment->tcp_flags;
	tcphdr->tcp_urp = fragment->tcp_urp;

	if(fragment->data != NULL) {
		uint8_t* offload = (uint8_t*)(tcphdr + 1) + fragment->optlen * sizeof(uint32_t);
		rte_memcpy(offload, fragment->data, fragment->length);
	}

	tcphdr->cksum = 0;
	tcphdr->cksum = rte_ipv4_udptcp_cksum(iphdr, tcphdr);

	return 0;
}

static struct rte_mbuf* ln_send_tcp(struct rte_mempool* mbuf_pool, uint32_t sip, uint32_t dip, uint8_t* smac, uint8_t* dmac, struct ln_tcp_fragment* fragment) {

	struct rte_mbuf* mbuf = rte_pktmbuf_alloc(mbuf_pool);
	if(!mbuf) {

		rte_exit(EXIT_FAILURE, "rte_pktmbuf_alloc tcp\n");
	}

	uint16_t total_len = fragment->length + sizeof(struct rte_ether_hdr) + sizeof(struct rte_ipv4_hdr) + sizeof(struct rte_tcp_hdr) + fragment->optlen * sizeof(uint32_t);
	mbuf->pkt_len = total_len;
	mbuf->data_len = total_len;
	uint8_t* pktdata = rte_pktmbuf_mtod(mbuf, uint8_t*);
	ln_encode_tcp_pkt(pktdata, sip, dip, smac, dmac, fragment);

	return mbuf;
}

static int ln_tcp_out(struct rte_mempool* mbuf_pool) {

	struct ln_tcp_table* table = ln_tcp_instance();
	struct ln_tcp_stream* stream = NULL;

	for(stream = table->streams; stream != NULL; stream = stream->next) {

		struct ln_tcp_fragment* fragment = NULL;
		int nb_snd = rte_ring_mc_dequeue(stream->snd_buf, (void**)&fragment);
		if(nb_snd < 0)
			continue;

		uint8_t* dmac = ng_get_dst_macaddr(stream->sip);
		if(dmac == NULL) {

			struct rte_mbuf* arp_buf = ng_send_arp(mbuf_pool, RTE_ARP_OP_REQUEST, gDefaultArpMac, stream->dip, stream->sip);
			struct inout_ring* ring = inout_ring_instance();
			rte_ring_mp_enqueue_burst(ring->out, (void**)&arp_buf, 1, NULL);
			rte_ring_mp_enqueue(stream->snd_buf, fragment);
		}
		else {

			struct rte_mbuf* tcp_buf = ln_send_tcp(mbuf_pool, stream->dip, stream->sip, stream->localmac, dmac, fragment);
			struct inout_ring* ring = inout_ring_instance();
			rte_ring_mp_enqueue_burst(ring->out, (void**)&tcp_buf, 1, NULL);

			rte_free(fragment);
		}
	}

	return 0;
}

int main(int argc, char *argv[]) {

	if (rte_eal_init(argc, argv) < 0) {
		rte_exit(EXIT_FAILURE, "Error with EAL init\n");
		
	}

	struct rte_mempool *mbuf_pool = rte_pktmbuf_pool_create("mbuf pool", NUM_MBUFS,
		0, 0, RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id());
	if (mbuf_pool == NULL) {
		rte_exit(EXIT_FAILURE, "Could not create mbuf pool\n");
	}

	ng_init_port(mbuf_pool);

	rte_eth_macaddr_get(gDpdkPortId, (struct rte_ether_addr *)gSrcMac);

#if ENABLE_TIMER

	rte_timer_subsystem_init();

	struct rte_timer arp_timer;
	rte_timer_init(&arp_timer);

	uint64_t hz = rte_get_timer_hz();
	unsigned lcore_id = rte_lcore_id();
	rte_timer_reset(&arp_timer, hz, PERIODICAL, lcore_id, arp_request_timer_cb, mbuf_pool);

#endif
	struct inout_ring* ring = inout_ring_instance();

	if(ring == NULL)
		rte_exit(EXIT_FAILURE, "Could not init ioInst\n");
	if(ring->in == NULL)
		ring->in = rte_ring_create("ring in", RING_SIZE, rte_socket_id(), RING_F_SC_DEQ | RING_F_SP_ENQ);
	if(ring->out == NULL)
		ring->out = rte_ring_create("ring out", RING_SIZE, rte_socket_id(), RING_F_SC_DEQ | RING_F_SP_ENQ);

	lcore_id = rte_get_next_lcore(lcore_id, 1, 0);
	rte_eal_remote_launch(pkt_process, mbuf_pool, lcore_id);

	lcore_id = rte_get_next_lcore(lcore_id, 1, 0);
	rte_eal_remote_launch(udp_server_entry, mbuf_pool, lcore_id);

	while (1) {

		struct rte_mbuf* rx[BURST_SIZE];
		unsigned nb_recv = rte_eth_rx_burst(gDpdkPortId, 0, rx, BURST_SIZE);

		if(nb_recv > BURST_SIZE) {

			rte_exit(EXIT_FAILURE, "Error receiving from eth\n");
		}
		else if(nb_recv > 0){

			rte_ring_sp_enqueue_burst(ring->in, (void**)rx, nb_recv, NULL);
		}

		struct rte_mbuf* tx[BURST_SIZE];
		unsigned nb_send = rte_ring_sc_dequeue_burst(ring->out, (void**)tx, BURST_SIZE, NULL);
		if(nb_send > 0) {

			rte_eth_tx_burst(gDpdkPortId, 0, tx, nb_send);

			unsigned i = 0;
			for(i = 0; i < nb_send; i++) {

				rte_pktmbuf_free(tx[i]);
			}
		}
#if ENABLE_TIMER

		static uint64_t prev_tsc = 0, cur_tsc;
		uint64_t diff_tsc;

		cur_tsc = rte_rdtsc();
		diff_tsc = cur_tsc - prev_tsc;
		if (diff_tsc > TIMER_RESOLUTION_CYCLES) {
			rte_timer_manage();
			prev_tsc = cur_tsc;
		}

#endif


	}

}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1857444.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

24 常用到的截图工具

1 语录 从此世界在我面前&#xff0c; 指向着我想去的任何地方&#xff0c; 我完全而绝对的主持着我 定义&#xff1a; 截图是将计算机屏幕上的当前显示内容保存为图片文件的行为。 概念&#xff1a; 全屏截图&#xff1a;捕捉整个屏幕的截图。区域截图&#xff1a;选择屏幕上…

【第十四课】区域经济可视化——标注

一、前言 地图上说明图面要素的名称、质量与数量特征的文字或数字&#xff0c;统称为地图 注记。只有图形符号而没有注记符号的地图&#xff0c;只能是一种令人费解的 “盲图”。 地图上的注记分为名称注记、说明注记和数字注记三种。名称注记用于说明各 种事物的专有名称&…

怎么使用RSI指标分析现货黄金行情走势?

拿到一波现货黄金行情走势&#xff0c;如何着手对其进行分析呢&#xff1f;投资者只要在网络上搜索一下&#xff0c;保管能够找到各种各样的答案&#xff0c;而本文要讨论的就是其中一种&#xff0c;我们借助RSI指标进行分析。 RSI就是相对强弱指标的简称&#xff0c;这是市场中…

车间现场管理那些事

在制造企业中&#xff0c;车间现场管理是至关重要的一环。车间现场管理包括了对生产设备、生产过程、产品质量以及员工行为的管理。有效的车间现场管理能够提高生产效率&#xff0c;降低成本&#xff0c;提高产品质量&#xff0c;并且能够保障员工的安全。那么&#xff0c;车间…

License简介和Licensecc的使用

License简介和Licensecc的使用 License简介什么是LIcense简易License制作加密扫盲对称加密非对称加密 Licensecc使用构建和编译在linux上进行编译UbuntuCentOS 7CentOS 8下载并编译配置编译和测试cmake 后可以跟的参数在Linux上为Windows进行交叉编译 在windos上进行编译MSVC (…

Linux 运维王者从不离手的10款工具

运维工程师在日常工作中频繁运用的10款工具&#xff0c;并细致阐述每款工具的功能、适用场景以及其卓越之处。 1. Shell脚本 功能&#xff1a;主要用于自动化任务和批处理作业。 适用场景&#xff1a;频繁用于文件处理、系统管理、简单的网络管理等操作。 优势&#xff1a;灵…

原装GUVCL-T10GD韩国GENICOM光电二极管紫外线传感器原厂代理商

深圳市宏南科技有限公司是韩国GenUV公司的原厂代理商&#xff0c;所售紫外线传感器均来自于原始生产厂商直接供货&#xff0c;非第三方转售。 GUVCL-T10GD 韩国GENICOM光电二极管光传感器 / 低亮度 / 紫外线 UV-C传感器 GUVCL-T10GD 采用基于氮化铟的材料 肖特基型 光电二极管…

竞赛选题 python 机器视觉 车牌识别 - opencv 深度学习 机器学习

1 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; 基于python 机器视觉 的车牌识别系统 &#x1f947;学长这里给一个题目综合评分(每项满分5分) 难度系数&#xff1a;3分工作量&#xff1a;3分创新点&#xff1a;3分 &#x1f9ff; 更多资…

机器学习之Kmeans丨集成学习丨决策树测试

选择题 下面属于决策树的后剪枝的是&#xff1f;【 正确答案: A】 A. 把数据集分成测试集和训练集&#xff0c;用测试集构建一个足够大的决策树&#xff0c;用测试集判断叶节点合并是否能降低误差。 B. 当树到达一定深度的时候停止生长。 C. 当前节点的样本数量小于某个阈值时&…

node.js游戏网站-计算机毕业设计源码031726

摘 要 基于网络游戏的蓬勃发展&#xff0c;游戏网站发挥着吸引玩家和提高玩家之间的互动性的重要作用&#xff0c;因而&#xff0c;建设了一个以游戏为中心的游戏官网。 该游戏提供了一个大型的玩家交流互动平台&#xff0c;包括用户管理、游戏社区、游戏信息、分类信息、游戏资…

蓝卓基于三大服务全“数”推进成渝工业互联网一体化

面向成渝地区的产业特色&#xff0c;蓝卓正不断提供多行业、多场景、多维度的解决方案&#xff0c;通过最佳实践、标杆案例&#xff0c;为企业数字化转型提供可参考的示范效应。 系统解决方案服务涵盖智能石化、汽配行业、智慧大数据等解决方案。以汽配行业为例&#xff0c;针对…

EcmaScript6全新语法特性-----EcmaScript6

{ // var会越狱,但是let会有作用域 var a 1; let b 2; } var m 1; var m 2; // var变量可以多次声明,但是let只能声明一次 let n 1; // let n 2; // var声明的变量会自动提升,这里没有就会显示undefined console.log(x); var x 10; // let变量不会变化,没有就报错 // co…

FISCO BCOS跨境应用获评工信部2024年新型数字服务优秀案例

6月18日&#xff0c;国家工信部公布2024年新型数字服务优秀案例名单&#xff0c;由前海管理局报送的“基于区块链技术打造深港跨境数据验证平台促进深港数据高效可信流动”案例入选。 随着深港合作的深入推进&#xff0c;FISCO BCOS发挥国产关键技术优势&#xff0c;持续助力深…

医院信创数字化运营平台,办公、院务、内控全面数字化,低代码拓展应用、安全可控

随着政策与技术的双重驱动&#xff0c;医院OA需求已经从传统的协同办公&#xff0c;转向信创环境下的运营、管理、服务的全程数字化、智能化。目前&#xff0c;医院信创建设全面展开&#xff0c;信创需求不断增加。 01.医院数字化信创建设政策 共同助力医院的高质量发展 医疗…

【DS Solutions】一个反欺诈产品的进化,Stripe Radar

Stripe Radar 是 Stripe 提供的一项防欺诈服务&#xff0c;它利用机器学习技术来帮助商家检测和阻止信用卡欺诈行为。这篇文章是Stripe公司关于其反欺诈解决方案Stripe Radar的构建过程的介绍。文章从Stripe的防欺诈团队工程师的角度出发&#xff0c;详细讲述了Stripe Radar的工…

精益管理咨询公司在与企业沟通时,应该如何展示自己的专业性?

在竞争激烈的商业环境中&#xff0c;精益管理咨询公司扮演着至关重要的角色。它们不仅为企业提供策略性的指导&#xff0c;还帮助企业实现资源的优化配置&#xff0c;从而达到提高效率、降低成本的目的。那么&#xff0c;精益管理咨询公司在与企业沟通时&#xff0c;应该如何展…

西部证券:1+1>2?

又一起券商收购拉开帷幕&#xff0c;证券业并购浪潮呼之欲出。 这次是——西部证券。 最近&#xff0c;西部证券公告称&#xff0c;因自身发展需要正在筹划收购国融证券控股权事项&#xff0c; 这是继“浙商国都”、“国联民生”、“华创太平洋”之后&#xff0c;今年券商并购…

抓包工具whistle的安装和使用

whistle基于Node实现的跨平台web调试代理工具&#xff0c;类似的工具有Windows平台上的Fiddler&#xff0c;主要用于查看、修改HTTP、HTTPS、Websocket的请求、响应&#xff0c;也可以作为HTTP代理服务器使用。 一、安装 whistle&#xff0c;没有cnpm的可以先安装下或者直接使…

测评四款AI视频热门神器,没想到最好用的竟然是它!

在这个科技飞速发展的时代&#xff0c;AI视频工具已经成为我们创意与想象的最佳拍档。今天&#xff0c;就让我们一起走进2024年最热门的四款AI视频工具&#xff0c;看看它们如何为我们的创作插上翅膀&#xff01;今天&#xff0c;就让我们一起走进2024年最热门的四款AI视频工具…

使用 HTML5 新标签 details 制作 Accordion 组件(赠送3个相关案例源码)

今天&#xff0c;我要和大家分享一个使用 HTML5 新标签 <details> 制作 Accordion&#xff08;手风琴&#xff09;组件的源码。通过这个源码&#xff0c;你可以快速掌握如何在网页中实现可折叠的问答列表功能&#xff0c;非常适合用于 FAQ 页面。 案例展示 案例效果&…