AI赋能天气:微软研究院发布首个大规模大气基础模型Aurora

news2024/11/19 1:23:11

编者按:气候变化日益加剧,高温、洪水、干旱,频率和强度不断增加的全球极端天气给整个人类社会都带来了难以估计的影响。这给现有的天气预测模型提出了更高的要求——这些模型要更准确地预测极端天气变化,为政府、企业和公众提供更可靠的信息,以便做出及时的准备和响应。为了应对这一挑战,微软研究院开发了首个大规模大气基础模型 Aurora,其超高的预测准确率、效率及计算速度,实现了目前最先进天气预测系统性能的显著提升。Aurora 不仅在预测技术上取得了重大突破,更在应用层面展现出了巨大潜力。


aurora-1

2023年11月,风暴“夏兰”席卷了欧洲西北部,造成了严重破坏,伴随而来的低压系统刷新了英格兰的记录,成为极为罕见的气象事件。这场风暴的猛烈程度让许多人措手不及,在暴露当前天气预测模型不足的同时,也凸显了气候变化日益加剧的情况下,提升气候预测准确性的迫切需求。我们如何才能更好地预测此类极端天气事件,并做好更为充分的准备?

Charlton-Perez 等人(2024年)近期的一项研究指出,即便是目前最先进的人工智能天气预测模型,在准确捕捉风暴“夏兰”的快速增强过程及其峰值风速方面也面临着挑战。为应对这些挑战,微软研究院开发了先进的人工智能基础模型 Aurora,可以从海量的大气数据中洞察到有价值的信息。Aurora 所展示出的创新天气预测方法,有望显著提升人们预测并减轻极端天气事件影响的能力,包括对风暴“夏兰”这类恶劣天气事件的急剧恶化进行预测。

Aurora 论文:Aurora: A Foundation Model of the Atmosphere

灵活的大气三维基础模型

Aurora 的有效性在于它经过了超一百万小时的多样化天气和气候模拟的训练,能够全面了解大气动力学。这使得该模型在广泛的预测任务中都表现出色,即使在数据稀疏的地区或极端天气的情况下也能如此。通过以0.1°(赤道处约11公里)的高空间分辨率运行,Aurora 可以捕捉大气过程的复杂细节,提供比以往更准确的预报,而且其计算成本仅为传统数值天气预报系统的一小部分。据估计,Aurora 相较于最先进的数值预报系统(Integrated Forecasting System, IFS)可提升约5000倍的计算速度。

Aurora 不仅拥有极高的预报准确性和效率,还具有多功能性,可以预测各种大气变量,从温度和风速到空气污染水平和温室气体浓度。Aurora 的架构旨在处理异构的黄金标准输入,并以不同的分辨率和保真度生成预测。该模型由一个灵活的 3D Swin Transformer 和基于 Perceiver 的编码器和解码器组成,使其能够处理和预测一系列跨空间和压力水平的大气变量。通过对大量多样化数据进行预训练并针对特定任务进行微调,Aurora 学会了捕捉大气中的复杂模式和结构,即使在有限的训练数据下对特定任务进行微调时,它仍然能有出色的表现。

图1:Aurora 架构

图1:Aurora 架构

大气化学和空气污染的快速预测

Aurora 多功能性的一个典型例子是其能够利用哥白尼大气监测服务(CAMS)的数据预测空气污染水平。这是一项众所周知的艰巨任务,因为大气化学、天气模式和人类活动之间复杂的相互作用,以及 CAMS 数据的高度异构性。通过利用灵活的编码器-解码器架构和注意力机制,Aurora 可以有效处理并学习这些具有挑战性的数据,捕捉空气污染物的独特特征及其与气象变量的关系。这使得 Aurora 能够在0.4°的空间分辨率下生成精确的五天全球空气污染预报,并在所有目标的74%中超越了最先进的大气化学模拟,从而证明了 Aurora 在解决各种环境预测问题方面的高度适应性和巨大潜力,即使在数据稀缺或高度复杂的情况下也是如此。

aurora-3-1

图2:Aurora 在许多目标上的表现都优于现行的 CAMS:(a) Aurora 对二氧化氮柱总量的样本预测与 CAMS 的分析比较;(b) Aurora 相对于 CAMS 的纬度加权均方根误差(RMSE),负值(蓝色)表示 Aurora 的表现更佳

图2:Aurora 在许多目标上的表现都优于现行的 CAMS:(a) Aurora 对二氧化氮柱总量的样本预测与 CAMS 的分析比较;(b) Aurora 相对于 CAMS 的纬度加权均方根误差(RMSE),负值(蓝色)表示 Aurora 的表现更佳

利用数据多样性与模型缩放改善大气预测

该研究的主要发现之一是,与在单一数据集上的训练相比,在多样化的数据集上进行预训练可以显著提升 Aurora 的性能。通过整合气候模拟、再分析产品及业务预报的数据,Aurora 能够学习到更强大、更通用的大气动力学表征。得益于庞大的规模和多样化的预训练数据,Aurora 可以在各种任务和分辨率上,超越目前最先进的数值天气预报模型和专业的深度学习方法。

aurora-4-1

aurora-4-2

图3:在不同数据上进行预训练并扩大模型规模均有助于提升性能

图3:在不同数据上进行预训练并扩大模型规模均有助于提升性能

Aurora 模型的规模化直接带来了在架构设计、训练数据语料库以及预训练和微调协议方面的性能优势,使得 Aurora 的性能超过了现有的专业深度学习模型。为进一步验证在多个数据集上预训练大模型的优势,研究员们将 Aurora 与 GraphCast 进行了比较,后者仅在 ERA5 上进行了预训练,并被认为是分辨率为0.25°、交付时间长达五天的最先进的人工智能模型。此外,研究员们还将 IFS HRES(数值天气预报的黄金标准)也纳入了比较范围。结果表明,无论是在与气象分析、气象站观测数据还是极端值的对比中,Aurora 的表现均优于 GraphCast 和 IFS HRES。

aurora-5-1

aurora-5-2

图4:在绝大多数目标上,Aurora 的性能都优于现行的 GraphCast 和 HRES。在每幅图中,中心线右侧的值代表高于阈值的累积均方根误差,左侧的值表示低于阈值的累积均方根误差。

图4:在绝大多数目标上,Aurora 的性能都优于现行的 GraphCast 和 HRES。在每幅图中,中心线右侧的值代表高于阈值的累积均方根误差,左侧的值表示低于阈值的累积均方根误差。

地球系统建模的范式转变

Aurora 的影响力远不止于大气预报领域。通过展示基础模型在地球科学中的潜力,该研究为开发覆盖整个地球系统的综合模型奠定了基础。基础模型可以在数据稀缺的情况下出色地完成下游任务,有望使得在数据稀缺地区(例如发展中国家和极地地区)的民众也能够更加平等地获取准确的天气和气候信息。同时,这一进展也将对农业、交通、能源开发以及灾害应对等多个领域产生深远影响,让人们能够更好地适应气候变化带来的挑战。

随着人工智能在环境预测领域的不断进步,微软研究院希望 Aurora 能够成为未来研究和发展的新范式。该研究强调了多样化预训练数据集、模型扩展和灵活架构在构建地球科学强大的基础模型时的重要性。随着计算资源和数据可用性的不断进步,可以预见,未来像 Aurora 这样的基础模型将成为天气和气候领域预测系统的核心,为全球决策者和公众提供及时、准确和可操作的洞见。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1856837.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

头歌——机器、深度学习——图像生成

第1关:手写数字体生成 任务描述 本关任务:编写一个程序,实现手写数字体的生成。 相关知识 为了完成本关任务,你需要掌握:1.生成器,2.判别器,3.GAN网络训练,4.手写数字体生成。 …

Gitee 的公钥删不掉

公钥管理里已经没有公钥了, 仓库里还有,这是怎么回事? 这两个好像又没什么关系。 那为啥要搞两处呢? 个人信息里的公钥一直就没有仓库里使用的公钥, 删掉个人信息里的也没什么影响。 在仓库管理页面导入新公钥提示已…

【论文速读】|利用大语言模型实现现实世界代码的翻译:一项针对翻译到Rust语言的研究

本次分享论文:Towards Translating Real-World Code with LLMs: A Study of Translating to Rust 基本信息 原文作者:Hasan Ferit Eniser, Hanliang Zhang, Cristina David, Meng Wang, Maria Christakis, Brandon Paulsen, Joey Dodds, Daniel Kroeni…

【服务器07】之【GitHub项目管理】及【Unity异步加载场景】

登录GitHub官网 GitHub: Let’s build from here GitHub 注册账号 登录账号 输入一个自定义名字,点击创建存储库就可以了 现在我们下载Fork Fork - a fast and friendly git client for Mac and Windows (git-fork.com) 免费的 下载完成之后点击File下的Clone …

文章解读与仿真程序复现思路——电力自动化设备EI\CSCD\北大核心《考虑需求响应与储能寿命模型的火储协调优化运行策略》

本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》 论文与完整源程序_电网论文源程序的博客-CSDN博客https://blog.csdn.net/liang674027206/category_12531414.html 电网论文源程序-CSDN博客电网论文源…

【研究】2012年后日股的“牛市起点”:安倍“出海潮”与巴菲特买点

2012 年-2017 年日股长周期反转定价的核心是房地产负面拖累结束,日本完成某种意义上的新旧动能宏观叙事转变。2012 年之后安倍经济学之于日股的长周期反转定价并非简单财政货币化的估值推动,而是鼓励企业出海获得营收利润增长。日股在2020年出现的巴菲特…

硬件基础知识——自学习梳理

计算机存储分为闪存和永久性存储。 硬盘(永久存储)主要分为机械磁盘和固态硬盘。 机械磁盘主要靠磁颗粒的正负极方向来存储0或1,且机械磁盘没有使用寿命。 固态硬盘就有使用寿命了,大概支持30w次的读写操作。 闪存使用的是电容…

Kotlin 中的解构

解构声明是 Kotlin 语言的一个特性,它允许我们从一个数据结构中提取多个变量,这样可以让我们的代码更加简洁易读,同时也提高了代码的可维护性。 在 Kotlin 中,解构可以用于多种数据类型,例如,列表&#xf…

数字化营销与传统营销的完美协奏曲!

在这个数字化的时代,营销的世界正在发生着巨大的变革!数字化营销如火箭般崛起,但传统营销也并未过时。那么,如何让它们携手共进,创造出无与伦比的营销效果呢?今天,就让我们讲述一下蚓链数字化营…

Toco x Databend:Databend Cloud 如何满足 Web3 大数据服务的严苛考验?

Toco 是一家位于瑞士的 Web3 服务提供商,致力于通过彻底改变全球金融体系的陈旧观念来应对气候变化。他们提供了一种开创性的碳货币 Tocos,每个流通中的 Tocos 代表一吨二氧化碳当量,存储在安全可靠的数字钱包中。用户可以使用 Tocos 应用轻松…

捕捉过往的时光,5个步骤,安卓手机找回删除的照片

手机不仅仅是一个通讯工具,更是一个记录生活点滴的神器。手机照相机的出现,让我们随时随地都能捕捉到美好的瞬间,留下珍贵的回忆。然而,随着时间的推移,我们可能会不小心删除了这些照片,或者因为各种原因导…

JavaScript的运行机制

阐述几个概念 1. ECStack ( Execution Context Stack)执行环境栈 浏览器会在计算机内存中分配一块内存,专门用来供代码执行的 2. Heap堆内存 存放东西(存放对象和方法即引用类型) 3. EC ( Execution Context ) 执行上下文 代码自己执行所在的环境 …

论文翻译 | SELF-RAG: 学习通过自我反思来检索、生成和评估

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, Hannaneh Hajishirzi 华盛顿大学,IBM人工智能研究院 摘要 尽管大语言模型(LLMs)具有非凡的能力,但是它们经常产生不符合事实的响应,因为它们只依赖于它们封装的参数…

Java 应用的性能优化技巧和方法

Java应用性能优化是一个复杂且多层次的过程,涵盖了从代码编写到系统架构,再到运行环境配置的各个方面。 一、代码优化 1. 合理的数据结构和算法 选择合适的数据结构和算法对提高应用性能至关重要。Java提供了丰富的数据结构和算法库(如Jav…

猫咪也怕油腻?选对猫粮是关键!福派斯鲜肉猫粮守护猫咪健康

亲爱的猫友们,我们都知道,猫咪的饮食健康是每一个铲屎官都非常关心的问题。最近,有些猫友向我反映,他们给猫主子喂食的猫粮油脂比较大,不禁让人担心这对猫咪是否真的好。 1️⃣ 首先,让我们来聊聊油脂在猫粮…

设计模式原则——里氏替换原则

设计模式原则 设计模式示例代码库地址: https://gitee.com/Jasonpupil/designPatterns 里氏替换原则 继承必须确保父类所拥有的性质在子类中依然成立 与开闭原则不同的是开闭原则可以改变父类原有的功能,里氏替换原则不能修改父类的原有的性质&#…

Clickhouse 的性能优化实践总结

文章目录 前言性能优化的原则数据结构优化内存优化磁盘优化网络优化CPU优化查询优化数据迁移优化 前言 ClickHouse是一个性能很强的OLAP数据库,性能强是建立在专业运维之上的,需要专业运维人员依据不同的业务需求对ClickHouse进行有针对性的优化。同一批…

用友 【U8+】供应链-暂估方式

【U8+】供应链-暂估方式 知识点:三种不同暂估方式的应用 应用场景: 对于采购业务如果货到票未到时,需要对采购入库进行估价入账,等收到发票时再按发票的成本核算采购入库成本。系统提供了三种暂估方式:月初回冲、单到回冲和单到补差。 操作流程: l 单到回冲 跨月全…

FreeCAD属性机制原理分析

1.实现原理 FreeCAD定义了一套属性层次结构,最上层是Property基类,该类主要提供了外部访问属性的接口及两个成员变量:属性名称、属性状态及属性容器类PropertyContainer。具体的属性直接或间接继承Property类,属性类中主要记录属性…

【机器学习】半监督学习可以实现什么功能?

目录 一、什么是机器学习二、半监督学习算法介绍三、半监督学习算法的应用场景四、半监督学习可以实现什么功能? 一、什么是机器学习 机器学习是一种人工智能技术,它使计算机系统能够从数据中学习并做出预测或决策,而无需明确编程。它涉及到…