一.特点
1.全局唯一性:对于大数据量的分库分表场景,例如水平分表需要保证主键id的全局唯一性。
2.趋势递增:整体的id趋势是递增的,不是单调递增。
3.不规则性:id不连续,无规则,不规则。
4.包含时间戳。
二.可用性
1.高可用:创建一个唯一分布式id。
2.低延迟:服务器生成id的速度快、延迟低。
3.高吞吐量:一次能生成的id的量多。
三.优点
1.毫秒数在高位,自增序列在低位,是趋势递增的。
2.不依赖第三方系统,生成id的性能高。
3.根据自身业务灵活分配bit位。
四.缺点
1.强依赖机器时钟,机器时钟回拨,会导致发号重复或者会处于不可用状态。
2.在单机上是递增的,在分布式环境中,每台机器上的时钟不可能完全同步,会出现不是全局递增的情况。
五.位数构成
1.id为long类型,一共64个bit位。
2.第1位为符号位,共1位,一般为0,表示正数。
3.第2-42位放毫秒级时间戳,共41位,2^41/(1000*60*60*24*365)=69,大概可以使用 69 年。
4.第43-47位为机房id(机器id),共5位。
5.第48-52位为机器id(服务id),共5位。
6.第43-52位最多可以部署 2^10=1024 台机器。
7.第53-64位为序列号位,共12位,同一毫秒时间戳,通过递增序列号来进一步区分id。对于同一台机器,同一毫秒时间戳下,可以生成2^12=4096个不重复的id。
六.位数图解
七.对比
1.uuid
1.实现简单。
2.能保证唯一性。
3.性能高,无网络带宽。
4.生成的id是无序的,无法保证趋势递增。
5.id无时间戳、无服务id等业务含义,不可读。
6.占16个字节128位,存储大。
7.不适合做数据库主键,作为索引因为无序会影响性能。
八.源码
package cn.dukrig.id.snowflake;
/**
* description:雪花算法实现
* <p>
* Twitter_Snowflake<br>
* SnowFlake的结构如下(每部分用-分开):<br>
* 0 - 0000000000 0000000000 0000000000 0000000000 0 - 00000 - 00000 - 000000000000 <br>
* 1位标识,由于long基本类型在Java中是带符号的,最高位是符号位,正数是0,负数是1,所以id一般是正数,最高位是0<br>
* 41位时间截(毫秒级),注意,41位时间截不是存储当前时间的时间截,而是存储时间截的差值(当前时间截 - 开始时间截)
* 得到的值),这里的的开始时间截,一般是我们的id生成器开始使用的时间,由我们程序来指定的(如下下面程序IdWorker类的startTime属性)。
* 41位的时间截,可以使用69年,年T = (1L << 41) / (1000L * 60 * 60 * 24 * 365) = 69<br>
* 10位的数据机器位,可以部署在1024个节点,包括5位dataCenterId和5位workerId<br>
* 12位序列,毫秒内的计数,12位的计数顺序号支持每个节点每毫秒(同一机器,同一时间截)产生4096个ID序号<br>
* 加起来刚好64位,为一个Long型。<br>
* SnowFlake的优点是,整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由数据中心ID和机器ID作区分),并且效率较高,经测试,SnowFlake每秒能够产生26万ID左右。
*
* @author RenShiWei
* Date: 2021/7/18 17:22
**/
public class SnowflakeIdWorker {
// ==============================Fields===========================================
/**
* 开始时间截 (2015-01-01)
*/
private final long twepoch = 1420041600000L;
/**
* 机器id所占的位数
*/
private final long workerIdBits = 5L;
/**
* 数据标识id所占的位数
*/
private final long dataCenterIdBits = 5L;
/**
* 支持的最大机器id,结果是31 (这个移位算法可以很快的计算出几位二进制数所能表示的最大十进制数)
*/
private final long maxWorkerId = - 1L ^ (- 1L << workerIdBits);
/**
* 支持的最大数据标识id,结果是31
*/
private final long maxDatacenterId = - 1L ^ (- 1L << dataCenterIdBits);
/**
* 序列在id中占的位数
*/
private final long sequenceBits = 12L;
/**
* 机器ID向左移12位
*/
private final long workerIdShift = sequenceBits;
/**
* 数据标识id向左移17位(12+5)
*/
private final long dataCenterIdShift = sequenceBits + workerIdBits;
/**
* 时间截向左移22位(5+5+12)
*/
private final long timestampLeftShift = sequenceBits + workerIdBits + dataCenterIdBits;
/**
* 生成序列的掩码,这里为4095 (0b111111111111=0xfff=4095)
*/
private final long sequenceMask = - 1L ^ (- 1L << sequenceBits);
/**
* 工作机器ID(0~31)
*/
private long workerId;
/**
* 数据中心ID(0~31)
*/
private long dataCenterId;
/**
* 毫秒内序列(0~4095)
*/
private long sequence = 0L;
/**
* 上次生成ID的时间截
*/
private long lastTimestamp = - 1L;
//==============================Constructors=====================================
/**
* 构造函数
*
* @param workerId 工作ID (0~31)
* @param dataCenterId 数据中心ID (0~31)
*/
public SnowflakeIdWorker(long workerId, long dataCenterId) {
if (workerId > maxWorkerId || workerId < 0) {
throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0",
maxWorkerId));
}
if (dataCenterId > maxDatacenterId || dataCenterId < 0) {
throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0",
maxDatacenterId));
}
this.workerId = workerId;
this.dataCenterId = dataCenterId;
}
// ==============================Methods==========================================
/**
* 获得下一个ID (该方法是线程安全的)
*
* @return SnowflakeId
*/
public synchronized long nextId() {
long timestamp = timeGen();
//如果当前时间小于上一次ID生成的时间戳,说明系统时钟回退过这个时候应当抛出异常
if (timestamp < lastTimestamp) {
throw new RuntimeException(
String.format("Clock moved backwards. Refusing to generate id for %d milliseconds",
lastTimestamp - timestamp));
}
//如果是同一时间生成的,则进行毫秒内序列
if (lastTimestamp == timestamp) {
sequence = (sequence + 1) & sequenceMask;
//毫秒内序列溢出
if (sequence == 0) {
//阻塞到下一个毫秒,获得新的时间戳
timestamp = tilNextMillis(lastTimestamp);
}
} else {
//时间戳改变,毫秒内序列重置
sequence = 0L;
}
//上次生成ID的时间截
lastTimestamp = timestamp;
/*
移位并通过或运算拼到一起组成64位的ID
((timestamp - twepoch) << timestampLeftShift) // 计算时间戳
| (datacenterId << datacenterIdShift) // 计算数据中心
| (workerId << workerIdShift) // 计算机器ID
| sequence; //序列号
*/
return ((timestamp - twepoch) << timestampLeftShift)
| (dataCenterId << dataCenterIdShift)
| (workerId << workerIdShift)
| sequence;
}
/**
* 阻塞到下一个毫秒,直到获得新的时间戳
*
* @param lastTimestamp 上次生成ID的时间截
* @return 当前时间戳
*/
protected long tilNextMillis(long lastTimestamp) {
long timestamp = timeGen();
while (timestamp <= lastTimestamp) {
timestamp = timeGen();
}
return timestamp;
}
/**
* 返回以毫秒为单位的当前时间
*
* @return 当前时间(毫秒)
*/
protected long timeGen() {
return System.currentTimeMillis();
}
//==============================Test=============================================
/**
* 测试
*/
public static void main(String[] args) {
SnowflakeIdWorker idWorker = new SnowflakeIdWorker(0, 0);
for (int i = 0; i < 1000; i++) {
long id = idWorker.nextId();
System.out.println(Long.toBinaryString(id));
System.out.println(id);
}
}
}