Java---微服务---分布式搜索引擎elasticsearch(3)

news2024/12/25 0:28:51

分布式搜索引擎elasticsearch(3)

  • 1.数据聚合
    • 1.1.聚合的种类
    • 1.2.DSL实现聚合
      • 1.2.1.Bucket聚合语法
      • 1.2.2.聚合结果排序
      • 1.2.3.限定聚合范围
      • 1.2.4.Metric聚合语法
      • 1.2.5.小结
    • 1.3.RestAPI实现聚合
      • 1.3.1.API语法
      • 1.3.2.业务需求
      • 1.3.3.业务实现
  • 2.自动补全
    • 2.1.拼音分词器
    • 2.2.自定义分词器
    • 2.3.自动补全查询
    • 2.4.实现酒店搜索框自动补全
      • 2.4.1.修改酒店映射结构
      • 2.4.2.修改HotelDoc实体
      • 2.4.3.重新导入
      • 2.4.4.自动补全查询的JavaAPI
      • 2.4.5.实现搜索框自动补全
  • 3.数据同步
    • 3.1.思路分析
      • 3.1.1.同步调用
      • 3.1.2.异步通知
      • 3.1.3.监听binlog
      • 3.1.4.选择
    • 3.2.实现数据同步
      • 3.2.1.思路
      • 3.2.2.导入demo
      • 3.2.3.声明交换机、队列
        • 1)引入依赖,配置mq
        • 2)声明队列交换机名称
        • 3)声明队列交换机
      • 3.2.4.发送MQ消息
      • 3.2.5.接收MQ消息
  • 4.集群
    • 4.1.搭建ES集群
    • 4.2.集群脑裂问题
      • 4.2.1.集群职责划分
      • 4.2.2.脑裂问题
      • 4.2.3.小结
    • 4.3.集群分布式存储
      • 4.3.1.分片存储测试
      • 4.3.2.分片存储原理
    • 4.4.集群分布式查询
    • 4.5.集群故障转移

1.数据聚合

**聚合(aggregations)**可以让我们极其方便的实现对数据的统计、分析、运算。例如:

  • 什么品牌的手机最受欢迎?
  • 这些手机的平均价格、最高价格、最低价格?
  • 这些手机每月的销售情况如何?

实现这些统计功能的比数据库的sql要方便的多,而且查询速度非常快,可以实现近实时搜索效果。

1.1.聚合的种类

聚合常见的有三类:

  • **桶(Bucket)**聚合:用来对文档做分组

    • TermAggregation:按照文档字段值分组,例如按照品牌值分组、按照国家分组
    • Date Histogram:按照日期阶梯分组,例如一周为一组,或者一月为一组
  • **度量(Metric)**聚合:用以计算一些值,比如:最大值、最小值、平均值等

    • Avg:求平均值
    • Max:求最大值
    • Min:求最小值
    • Stats:同时求max、min、avg、sum等
  • **管道(pipeline)**聚合:其它聚合的结果为基础做聚合

**注意:**参加聚合的字段必须是keyword、日期、数值、布尔类型

1.2.DSL实现聚合

现在,我们要统计所有数据中的酒店品牌有几种,其实就是按照品牌对数据分组。此时可以根据酒店品牌的名称做聚合,也就是Bucket聚合。

1.2.1.Bucket聚合语法

语法如下:

GET /hotel/_search
{
  "size": 0,  // 设置size为0,结果中不包含文档,只包含聚合结果
  "aggs": { // 定义聚合
    "brandAgg": { //给聚合起个名字
      "terms": { // 聚合的类型,按照品牌值聚合,所以选择term
        "field": "brand", // 参与聚合的字段
        "size": 20 // 希望获取的聚合结果数量
      }
    }
  }
}

结果如图:

在这里插入图片描述

1.2.2.聚合结果排序

默认情况下,Bucket聚合会统计Bucket内的文档数量,记为_count,并且按照_count降序排序。

我们可以指定order属性,自定义聚合的排序方式:

GET /hotel/_search
{
  "size": 0, 
  "aggs": {
    "brandAgg": {
      "terms": {
        "field": "brand",
        "order": {
          "_count": "asc" // 按照_count升序排列
        },
        "size": 20
      }
    }
  }
}

1.2.3.限定聚合范围

默认情况下,Bucket聚合是对索引库的所有文档做聚合,但真实场景下,用户会输入搜索条件,因此聚合必须是对搜索结果聚合。那么聚合必须添加限定条件。

我们可以限定要聚合的文档范围,只要添加query条件即可:

GET /hotel/_search
{
  "query": {
    "range": {
      "price": {
        "lte": 200 // 只对200元以下的文档聚合
      }
    }
  }, 
  "size": 0, 
  "aggs": {
    "brandAgg": {
      "terms": {
        "field": "brand",
        "size": 20
      }
    }
  }
}

这次,聚合得到的品牌明显变少了:

在这里插入图片描述

1.2.4.Metric聚合语法

上一节,我们对酒店按照品牌分组,形成了一个个桶。现在我们需要对桶内的酒店做运算,获取每个品牌的用户评分的min、max、avg等值。

这就要用到Metric聚合了,例如stat聚合:就可以获取min、max、avg等结果。

语法如下:

GET /hotel/_search
{
  "size": 0, 
  "aggs": {
    "brandAgg": { 
      "terms": { 
        "field": "brand", 
        "size": 20
      },
      "aggs": { // 是brands聚合的子聚合,也就是分组后对每组分别计算
        "score_stats": { // 聚合名称
          "stats": { // 聚合类型,这里stats可以计算min、max、avg等
            "field": "score" // 聚合字段,这里是score
          }
        }
      }
    }
  }
}

这次的score_stats聚合是在brandAgg的聚合内部嵌套的子聚合。因为我们需要在每个桶分别计算。

另外,我们还可以给聚合结果做个排序,例如按照每个桶的酒店平均分做排序:

1.2.5.小结

aggs代表聚合,与query同级,此时query的作用是?

  • 限定聚合的的文档范围

聚合必须的三要素:

  • 聚合名称
  • 聚合类型
  • 聚合字段

聚合可配置属性有:

  • size:指定聚合结果数量
  • order:指定聚合结果排序方式
  • field:指定聚合字段

1.3.RestAPI实现聚合

1.3.1.API语法

聚合条件与query条件同级别,因此需要使用request.source()来指定聚合条件。

聚合条件的语法:

在这里插入图片描述

聚合的结果也与查询结果不同,API也比较特殊。不过同样是JSON逐层解析:

在这里插入图片描述

1.3.2.业务需求

需求:搜索页面的品牌、城市等信息不应该是在页面写死,而是通过聚合索引库中的酒店数据得来的:

在这里插入图片描述

分析:

目前,页面的城市列表、星级列表、品牌列表都是写死的,并不会随着搜索结果的变化而变化。但是用户搜索条件改变时,搜索结果会跟着变化。

例如:用户搜索“东方明珠”,那搜索的酒店肯定是在上海东方明珠附近,因此,城市只能是上海,此时城市列表中就不应该显示北京、深圳、杭州这些信息了。

也就是说,搜索结果中包含哪些城市,页面就应该列出哪些城市;搜索结果中包含哪些品牌,页面就应该列出哪些品牌。

如何得知搜索结果中包含哪些品牌?如何得知搜索结果中包含哪些城市?

使用聚合功能,利用Bucket聚合,对搜索结果中的文档基于品牌分组、基于城市分组,就能得知包含哪些品牌、哪些城市了。

因为是对搜索结果聚合,因此聚合是限定范围的聚合,也就是说聚合的限定条件跟搜索文档的条件一致。

查看浏览器可以发现,前端其实已经发出了这样的一个请求:

在这里插入图片描述

请求参数与搜索文档的参数完全一致

返回值类型就是页面要展示的最终结果:

在这里插入图片描述

结果是一个Map结构:

  • key是字符串,城市、星级、品牌、价格
  • value是集合,例如多个城市的名称

1.3.3.业务实现

cn.itcast.hotel.web包的HotelController中添加一个方法,遵循下面的要求:

  • 请求方式:POST
  • 请求路径:/hotel/filters
  • 请求参数:RequestParams,与搜索文档的参数一致
  • 返回值类型:Map<String, List<String>>

代码:

    @PostMapping("filters")
    public Map<String, List<String>> getFilters(@RequestBody RequestParams params){
        return hotelService.getFilters(params);
    }

这里调用了IHotelService中的getFilters方法,尚未实现。

cn.itcast.hotel.service.IHotelService中定义新方法:

Map<String, List<String>> filters(RequestParams params);

cn.itcast.hotel.service.impl.HotelService中实现该方法:

@Override
public Map<String, List<String>> filters(RequestParams params) {
    try {
        // 1.准备Request
        SearchRequest request = new SearchRequest("hotel");
        // 2.准备DSL
        // 2.1.query
        buildBasicQuery(params, request);
        // 2.2.设置size
        request.source().size(0);
        // 2.3.聚合
        buildAggregation(request);
        // 3.发出请求
        SearchResponse response = client.search(request, RequestOptions.DEFAULT);
        // 4.解析结果
        Map<String, List<String>> result = new HashMap<>();
        Aggregations aggregations = response.getAggregations();
        // 4.1.根据品牌名称,获取品牌结果
        List<String> brandList = getAggByName(aggregations, "brandAgg");
        result.put("brand", brandList);
        // 4.2.根据品牌名称,获取品牌结果
        List<String> cityList = getAggByName(aggregations, "cityAgg");
        result.put("city", cityList);
        // 4.3.根据品牌名称,获取品牌结果
        List<String> starList = getAggByName(aggregations, "starAgg");
        result.put("starName", starList);

        return result;
    } catch (IOException e) {
        throw new RuntimeException(e);
    }
}

private void buildAggregation(SearchRequest request) {
    request.source().aggregation(AggregationBuilders
                                 .terms("brandAgg")
                                 .field("brand")
                                 .size(100)
                                );
    request.source().aggregation(AggregationBuilders
                                 .terms("cityAgg")
                                 .field("city")
                                 .size(100)
                                );
    request.source().aggregation(AggregationBuilders
                                 .terms("starAgg")
                                 .field("starName")
                                 .size(100)
                                );
}

private List<String> getAggByName(Aggregations aggregations, String aggName) {
    // 4.1.根据聚合名称获取聚合结果
    Terms brandTerms = aggregations.get(aggName);
    // 4.2.获取buckets
    List<? extends Terms.Bucket> buckets = brandTerms.getBuckets();
    // 4.3.遍历
    List<String> brandList = new ArrayList<>();
    for (Terms.Bucket bucket : buckets) {
        // 4.4.获取key
        String key = bucket.getKeyAsString();
        brandList.add(key);
    }
    return brandList;
}

2.自动补全

当用户在搜索框输入字符时,我们应该提示出与该字符有关的搜索项,

这种根据用户输入的字母,提示完整词条的功能,就是自动补全了。

因为需要根据拼音字母来推断,因此要用到拼音分词功能。

2.1.拼音分词器

要实现根据字母做补全,就必须对文档按照拼音分词。在GitHub上恰好有elasticsearch的拼音分词插件。地址:https://github.com/medcl/elasticsearch-analysis-pinyin

在这里插入图片描述

安装方式与IK分词器一样,分三步:

​ ①解压

​ ②上传到虚拟机中,elasticsearch的plugin目录

​ ③重启elasticsearch

​ ④测试

详细安装步骤可以参考IK分词器的安装过程。
Java—微服务—elasticsearch安装部署

测试用法如下:

POST /_analyze
{
  "text": "如家酒店还不错",
  "analyzer": "pinyin"
}

结果:

在这里插入图片描述

2.2.自定义分词器

默认的拼音分词器会将每个汉字单独分为拼音,而我们希望的是每个词条形成一组拼音,需要对拼音分词器做个性化定制,形成自定义分词器。

elasticsearch中分词器(analyzer)的组成包含三部分:

  • character filters:在tokenizer之前对文本进行处理。例如删除字符、替换字符
  • tokenizer:将文本按照一定的规则切割成词条(term)。例如keyword,就是不分词;还有ik_smart
  • tokenizer filter:将tokenizer输出的词条做进一步处理。例如大小写转换、同义词处理、拼音处理等

文档分词时会依次由这三部分来处理文档:

在这里插入图片描述

声明自定义分词器的语法如下:

PUT /test
{
  "settings": {
    "analysis": {
      "analyzer": { // 自定义分词器
        "my_analyzer": {  // 分词器名称
          "tokenizer": "ik_max_word",
          "filter": "py"
        }
      },
      "filter": { // 自定义tokenizer filter
        "py": { // 过滤器名称
          "type": "pinyin", // 过滤器类型,这里是pinyin
		  "keep_full_pinyin": false,
          "keep_joined_full_pinyin": true,
          "keep_original": true,
          "limit_first_letter_length": 16,
          "remove_duplicated_term": true,
          "none_chinese_pinyin_tokenize": false
        }
      }
    }
  },
  "mappings": {
    "properties": {
      "name": {
        "type": "text",
        "analyzer": "my_analyzer", // 创建时使用
        "search_analyzer": "ik_smart" // 搜索时使用
      }
    }
  }
}

测试:

在这里插入图片描述

总结:

如何使用拼音分词器?

  • ①下载pinyin分词器

  • ②解压并放到elasticsearch的plugin目录

  • ③重启即可

如何自定义分词器?

  • ①创建索引库时,在settings中配置,可以包含三部分

  • ②character filter

  • ③tokenizer

  • ④filter

拼音分词器注意事项?

  • 为了避免搜索到同音字,搜索时不要使用拼音分词器

在这里插入图片描述

2.3.自动补全查询

elasticsearch提供了Completion Suggester查询来实现自动补全功能。这个查询会匹配以用户输入内容开头的词条并返回。为了提高补全查询的效率,对于文档中字段的类型有一些约束:

  • 参与补全查询的字段必须是completion类型。

  • 字段的内容一般是用来补全的多个词条形成的数组。

比如,一个这样的索引库:

// 创建索引库
PUT test
{
  "mappings": {
    "properties": {
      "title":{
        "type": "completion"
      }
    }
  }
}

然后插入下面的数据:

// 示例数据
POST test/_doc
{
  "title": ["Sony", "WH-1000XM3"]
}
POST test/_doc
{
  "title": ["SK-II", "PITERA"]
}
POST test/_doc
{
  "title": ["Nintendo", "switch"]
}

查询的DSL语句如下:

// 自动补全查询
GET /test/_search
{
  "suggest": {
    "title_suggest": {
      "text": "s", // 关键字
      "completion": {
        "field": "title", // 补全查询的字段
        "skip_duplicates": true, // 跳过重复的
        "size": 10 // 获取前10条结果
      }
    }
  }
}

2.4.实现酒店搜索框自动补全

现在,我们的hotel索引库还没有设置拼音分词器,需要修改索引库中的配置。但是我们知道索引库是无法修改的,只能删除然后重新创建。

另外,我们需要添加一个字段,用来做自动补全,将brand、suggestion、city等都放进去,作为自动补全的提示。

因此,总结一下,我们需要做的事情包括:

  1. 修改hotel索引库结构,设置自定义拼音分词器

  2. 修改索引库的name、all字段,使用自定义分词器

  3. 索引库添加一个新字段suggestion,类型为completion类型,使用自定义的分词器

  4. 给HotelDoc类添加suggestion字段,内容包含brand、business

  5. 重新导入数据到hotel库

2.4.1.修改酒店映射结构

代码如下:

// 酒店数据索引库
PUT /hotel
{
  "settings": {
    "analysis": {
      "analyzer": {
        "text_anlyzer": {
          "tokenizer": "ik_max_word",
          "filter": "py"
        },
        "completion_analyzer": {
          "tokenizer": "keyword",
          "filter": "py"
        }
      },
      "filter": {
        "py": {
          "type": "pinyin",
          "keep_full_pinyin": false,
          "keep_joined_full_pinyin": true,
          "keep_original": true,
          "limit_first_letter_length": 16,
          "remove_duplicated_term": true,
          "none_chinese_pinyin_tokenize": false
        }
      }
    }
  },
  "mappings": {
    "properties": {
      "id":{
        "type": "keyword"
      },
      "name":{
        "type": "text",
        "analyzer": "text_anlyzer",
        "search_analyzer": "ik_smart",
        "copy_to": "all"
      },
      "address":{
        "type": "keyword",
        "index": false
      },
      "price":{
        "type": "integer"
      },
      "score":{
        "type": "integer"
      },
      "brand":{
        "type": "keyword",
        "copy_to": "all"
      },
      "city":{
        "type": "keyword"
      },
      "starName":{
        "type": "keyword"
      },
      "business":{
        "type": "keyword",
        "copy_to": "all"
      },
      "location":{
        "type": "geo_point"
      },
      "pic":{
        "type": "keyword",
        "index": false
      },
      "all":{
        "type": "text",
        "analyzer": "text_anlyzer",
        "search_analyzer": "ik_smart"
      },
      "suggestion":{
          "type": "completion",
          "analyzer": "completion_analyzer"
      }
    }
  }
}

2.4.2.修改HotelDoc实体

HotelDoc中要添加一个字段,用来做自动补全,内容可以是酒店品牌、城市、商圈等信息。按照自动补全字段的要求,最好是这些字段的数组。

因此我们在HotelDoc中添加一个suggestion字段,类型为List<String>,然后将brand、city、business等信息放到里面。

代码如下:

package cn.itcast.hotel.pojo;

import lombok.Data;
import lombok.NoArgsConstructor;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.List;

@Data
@NoArgsConstructor
public class HotelDoc {
    private Long id;
    private String name;
    private String address;
    private Integer price;
    private Integer score;
    private String brand;
    private String city;
    private String starName;
    private String business;
    private String location;
    private String pic;
    private Object distance;
    private Boolean isAD;
    private List<String> suggestion;

    public HotelDoc(Hotel hotel) {
        this.id = hotel.getId();
        this.name = hotel.getName();
        this.address = hotel.getAddress();
        this.price = hotel.getPrice();
        this.score = hotel.getScore();
        this.brand = hotel.getBrand();
        this.city = hotel.getCity();
        this.starName = hotel.getStarName();
        this.business = hotel.getBusiness();
        this.location = hotel.getLatitude() + ", " + hotel.getLongitude();
        this.pic = hotel.getPic();
        // 组装suggestion
        if(this.business.contains("/")){
            // business有多个值,需要切割
            String[] arr = this.business.split("/");
            // 添加元素
            this.suggestion = new ArrayList<>();
            this.suggestion.add(this.brand);
            Collections.addAll(this.suggestion, arr);
        }else {
            this.suggestion = Arrays.asList(this.brand, this.business);
        }
    }
}

2.4.3.重新导入

重新执行之前编写的导入数据功能,可以看到新的酒店数据中包含了suggestion:

在这里插入图片描述

2.4.4.自动补全查询的JavaAPI

之前我们学习了自动补全查询的DSL,而没有学习对应的JavaAPI,这里给出一个示例:

在这里插入图片描述

而自动补全的结果也比较特殊,解析的代码如下:

在这里插入图片描述

2.4.5.实现搜索框自动补全

查看前端页面,可以发现当我们在输入框键入时,前端会发起ajax请求:

在这里插入图片描述

返回值是补全词条的集合,类型为List<String>

1)在cn.itcast.hotel.web包下的HotelController中添加新接口,接收新的请求:

@GetMapping("suggestion")
public List<String> getSuggestions(@RequestParam("key") String prefix) {
    return hotelService.getSuggestions(prefix);
}

2)在cn.itcast.hotel.service包下的IhotelService中添加方法:

List<String> getSuggestions(String prefix);

3)在cn.itcast.hotel.service.impl.HotelService中实现该方法:

@Override
public List<String> getSuggestions(String prefix) {
    try {
        // 1.准备Request
        SearchRequest request = new SearchRequest("hotel");
        // 2.准备DSL
        request.source().suggest(new SuggestBuilder().addSuggestion(
            "suggestions",
            SuggestBuilders.completionSuggestion("suggestion")
            .prefix(prefix)
            .skipDuplicates(true)
            .size(10)
        ));
        // 3.发起请求
        SearchResponse response = client.search(request, RequestOptions.DEFAULT);
        // 4.解析结果
        Suggest suggest = response.getSuggest();
        // 4.1.根据补全查询名称,获取补全结果
        CompletionSuggestion suggestions = suggest.getSuggestion("suggestions");
        // 4.2.获取options
        List<CompletionSuggestion.Entry.Option> options = suggestions.getOptions();
        // 4.3.遍历
        List<String> list = new ArrayList<>(options.size());
        for (CompletionSuggestion.Entry.Option option : options) {
            String text = option.getText().toString();
            list.add(text);
        }
        return list;
    } catch (IOException e) {
        throw new RuntimeException(e);
    }
}

3.数据同步

elasticsearch中的酒店数据来自于mysql数据库,因此mysql数据发生改变时,elasticsearch也必须跟着改变,这个就是elasticsearch与mysql之间的数据同步

在这里插入图片描述

3.1.思路分析

常见的数据同步方案有三种:

  • 同步调用
  • 异步通知
  • 监听binlog

3.1.1.同步调用

方案一:同步调用

在这里插入图片描述

基本步骤如下:

  • hotel-demo对外提供接口,用来修改elasticsearch中的数据
  • 酒店管理服务在完成数据库操作后,直接调用hotel-demo提供的接口,

3.1.2.异步通知

方案二:异步通知

在这里插入图片描述

流程如下:

  • hotel-admin对mysql数据库数据完成增、删、改后,发送MQ消息
  • hotel-demo监听MQ,接收到消息后完成elasticsearch数据修改

3.1.3.监听binlog

方案三:监听binlog

在这里插入图片描述

流程如下:

  • 给mysql开启binlog功能
  • mysql完成增、删、改操作都会记录在binlog中
  • hotel-demo基于canal监听binlog变化,实时更新elasticsearch中的内容

3.1.4.选择

方式一:同步调用

  • 优点:实现简单,粗暴
  • 缺点:业务耦合度高

方式二:异步通知

  • 优点:低耦合,实现难度一般
  • 缺点:依赖mq的可靠性

方式三:监听binlog

  • 优点:完全解除服务间耦合
  • 缺点:开启binlog增加数据库负担、实现复杂度高

3.2.实现数据同步

3.2.1.思路

导入资料提供的hotel-admin项目作为酒店管理的微服务。当酒店数据发生增、删、改时,要求对elasticsearch中数据也要完成相同操作。

步骤:

  • 导入资料提供的hotel-admin项目,启动并测试酒店数据的CRUD

  • 声明exchange、queue、RoutingKey

  • 在hotel-admin中的增、删、改业务中完成消息发送

  • 在hotel-demo中完成消息监听,并更新elasticsearch中数据

  • 启动并测试数据同步功能

3.2.2.导入demo

导入资料提供的hotel-admin项目,运行后,访问 http://localhost:8099

在这里插入图片描述

其中包含了酒店的CRUD功能:

3.2.3.声明交换机、队列

MQ结构如图:

在这里插入图片描述

1)引入依赖,配置mq

在hotel-admin、hotel-demo中引入rabbitmq的依赖:

<!--amqp-->
<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-amqp</artifactId>
</dependency>

配置yaml文件:

spring:
  rabbitmq:
    host: 192.168.0.1
    port: 5672
    username: root
    password: 1234
    virtual-host: /

2)声明队列交换机名称

在hotel-admin和hotel-demo中的cn.itcast.hotel.constatnts包下新建一个类MqConstants

package cn.itcast.hotel.constatnts;

    public class MqConstants {
    /**
     * 交换机
     */
    public final static String HOTEL_EXCHANGE = "hotel.topic";
    /**
     * 监听新增和修改的队列
     */
    public final static String HOTEL_INSERT_QUEUE = "hotel.insert.queue";
    /**
     * 监听删除的队列
     */
    public final static String HOTEL_DELETE_QUEUE = "hotel.delete.queue";
    /**
     * 新增或修改的RoutingKey
     */
    public final static String HOTEL_INSERT_KEY = "hotel.insert";
    /**
     * 删除的RoutingKey
     */
    public final static String HOTEL_DELETE_KEY = "hotel.delete";
}

3)声明队列交换机

在hotel-demo中,定义配置类,声明队列、交换机:

package cn.itcast.hotel.config;

import cn.itcast.hotel.constants.MqConstants;
import org.springframework.amqp.core.Binding;
import org.springframework.amqp.core.BindingBuilder;
import org.springframework.amqp.core.Queue;
import org.springframework.amqp.core.TopicExchange;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

@Configuration
public class MqConfig {
    @Bean
    public TopicExchange topicExchange(){
        return new TopicExchange(MqConstants.HOTEL_EXCHANGE, true, false);
    }

    @Bean
    public Queue insertQueue(){
        return new Queue(MqConstants.HOTEL_INSERT_QUEUE, true);
    }

    @Bean
    public Queue deleteQueue(){
        return new Queue(MqConstants.HOTEL_DELETE_QUEUE, true);
    }

    @Bean
    public Binding insertQueueBinding(){
        return BindingBuilder.bind(insertQueue()).to(topicExchange()).with(MqConstants.HOTEL_INSERT_KEY);
    }

    @Bean
    public Binding deleteQueueBinding(){
        return BindingBuilder.bind(deleteQueue()).to(topicExchange()).with(MqConstants.HOTEL_DELETE_KEY);
    }
}

3.2.4.发送MQ消息

在hotel-admin中的增、删、改业务中分别发送MQ消息:

在这里插入图片描述

3.2.5.接收MQ消息

hotel-demo接收到MQ消息要做的事情包括:

  • 新增消息:根据传递的hotel的id查询hotel信息,然后新增一条数据到索引库
  • 删除消息:根据传递的hotel的id删除索引库中的一条数据

1)首先在hotel-demo的cn.itcast.hotel.service包下的IHotelService中新增新增、删除业务

void deleteById(Long id);

void insertById(Long id);

2)给hotel-demo中的cn.itcast.hotel.service.impl包下的HotelService中实现业务:

@Override
public void deleteById(Long id) {
    try {
        // 1.准备Request
        DeleteRequest request = new DeleteRequest("hotel", id.toString());
        // 2.发送请求
        client.delete(request, RequestOptions.DEFAULT);
    } catch (IOException e) {
        throw new RuntimeException(e);
    }
}

@Override
public void insertById(Long id) {
    try {
        // 0.根据id查询酒店数据
        Hotel hotel = getById(id);
        // 转换为文档类型
        HotelDoc hotelDoc = new HotelDoc(hotel);

        // 1.准备Request对象
        IndexRequest request = new IndexRequest("hotel").id(hotel.getId().toString());
        // 2.准备Json文档
        request.source(JSON.toJSONString(hotelDoc), XContentType.JSON);
        // 3.发送请求
        client.index(request, RequestOptions.DEFAULT);
    } catch (IOException e) {
        throw new RuntimeException(e);
    }
}

3)编写监听器

在hotel-demo中的cn.itcast.hotel.mq包新增一个类:

package cn.itcast.hotel.mq;

import cn.itcast.hotel.constants.MqConstants;
import cn.itcast.hotel.service.IHotelService;
import org.springframework.amqp.rabbit.annotation.RabbitListener;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Component;

@Component
public class HotelListener {

    @Autowired
    private IHotelService hotelService;

    /**
     * 监听酒店新增或修改的业务
     * @param id 酒店id
     */
    @RabbitListener(queues = MqConstants.HOTEL_INSERT_QUEUE)
    public void listenHotelInsertOrUpdate(Long id){
        hotelService.insertById(id);
    }

    /**
     * 监听酒店删除的业务
     * @param id 酒店id
     */
    @RabbitListener(queues = MqConstants.HOTEL_DELETE_QUEUE)
    public void listenHotelDelete(Long id){
        hotelService.deleteById(id);
    }
}

4.集群

单机的elasticsearch做数据存储,必然面临两个问题:海量数据存储问题、单点故障问题。

  • 海量数据存储问题:将索引库从逻辑上拆分为N个分片(shard),存储到多个节点
  • 单点故障问题:将分片数据在不同节点备份(replica )

ES集群相关概念:

  • 集群(cluster):一组拥有共同的 cluster name 的 节点。

  • 节点(node) :集群中的一个 Elasticearch 实例

  • 分片(shard):索引可以被拆分为不同的部分进行存储,称为分片。在集群环境下,一个索引的不同分片可以拆分到不同的节点中

    解决问题:数据量太大,单点存储量有限的问题。

    在这里插入图片描述

    此处,我们把数据分成3片:shard0、shard1、shard2

  • 主分片(Primary shard):相对于副本分片的定义。

  • 副本分片(Replica shard)每个主分片可以有一个或者多个副本,数据和主分片一样。

数据备份可以保证高可用,但是每个分片备份一份,所需要的节点数量就会翻一倍,成本实在是太高了!

为了在高可用和成本间寻求平衡,我们可以这样做:

  • 首先对数据分片,存储到不同节点
  • 然后对每个分片进行备份,放到对方节点,完成互相备份

这样可以大大减少所需要的服务节点数量,如图,我们以3分片,每个分片备份一份为例:

在这里插入图片描述

现在,每个分片都有1个备份,存储在3个节点:

  • node0:保存了分片0和1
  • node1:保存了分片0和2
  • node2:保存了分片1和2

4.1.搭建ES集群

参考文档资料:

《Java—微服务—elasticsearch安装部署》

4.2.集群脑裂问题

4.2.1.集群职责划分

elasticsearch中集群节点有不同的职责划分:

在这里插入图片描述

默认情况下,集群中的任何一个节点都同时具备上述四种角色。

但是真实的集群一定要将集群职责分离:

  • master节点:对CPU要求高,但是内存要求第
  • data节点:对CPU和内存要求都高
  • coordinating节点:对网络带宽、CPU要求高

职责分离可以让我们根据不同节点的需求分配不同的硬件去部署。而且避免业务之间的互相干扰。

一个典型的es集群职责划分如图:

在这里插入图片描述

4.2.2.脑裂问题

脑裂是因为集群中的节点失联导致的。

例如一个集群中,主节点与其它节点失联:

在这里插入图片描述

此时,node2和node3认为node1宕机,就会重新选主:

在这里插入图片描述

当node3当选后,集群继续对外提供服务,node2和node3自成集群,node1自成集群,两个集群数据不同步,出现数据差异。

当网络恢复后,因为集群中有两个master节点,集群状态的不一致,出现脑裂的情况:

在这里插入图片描述

解决脑裂的方案是,要求选票超过 ( eligible节点数量 + 1 )/ 2 才能当选为主,因此eligible节点数量最好是奇数。对应配置项是discovery.zen.minimum_master_nodes,在es7.0以后,已经成为默认配置,因此一般不会发生脑裂问题

例如:3个节点形成的集群,选票必须超过 (3 + 1) / 2 ,也就是2票。node3得到node2和node3的选票,当选为主。node1只有自己1票,没有当选。集群中依然只有1个主节点,没有出现脑裂。

4.2.3.小结

master eligible节点的作用是什么?

  • 参与集群选主
  • 主节点可以管理集群状态、管理分片信息、处理创建和删除索引库的请求

data节点的作用是什么?

  • 数据的CRUD

coordinator节点的作用是什么?

  • 路由请求到其它节点

  • 合并查询到的结果,返回给用户

4.3.集群分布式存储

当新增文档时,应该保存到不同分片,保证数据均衡,那么coordinating node如何确定数据该存储到哪个分片呢?

4.3.1.分片存储测试

插入三条数据:

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

测试可以看到,三条数据分别在不同分片:

在这里插入图片描述

结果:

在这里插入图片描述

4.3.2.分片存储原理

elasticsearch会通过hash算法来计算文档应该存储到哪个分片:

在这里插入图片描述

说明:

  • _routing默认是文档的id
  • 算法与分片数量有关,因此索引库一旦创建,分片数量不能修改!

新增文档的流程如下:

在这里插入图片描述

解读:

  • 1)新增一个id=1的文档
  • 2)对id做hash运算,假如得到的是2,则应该存储到shard-2
  • 3)shard-2的主分片在node3节点,将数据路由到node3
  • 4)保存文档
  • 5)同步给shard-2的副本replica-2,在node2节点
  • 6)返回结果给coordinating-node节点

4.4.集群分布式查询

elasticsearch的查询分成两个阶段:

  • scatter phase:分散阶段,coordinating node会把请求分发到每一个分片

  • gather phase:聚集阶段,coordinating node汇总data node的搜索结果,并处理为最终结果集返回给用户

在这里插入图片描述

4.5.集群故障转移

集群的master节点会监控集群中的节点状态,如果发现有节点宕机,会立即将宕机节点的分片数据迁移到其它节点,确保数据安全,这个叫做故障转移。

1)例如一个集群结构如图:

在这里插入图片描述

现在,node1是主节点,其它两个节点是从节点。

2)突然,node1发生了故障:

在这里插入图片描述

宕机后的第一件事,需要重新选主,例如选中了node2:

在这里插入图片描述

node2成为主节点后,会检测集群监控状态,发现:shard-1、shard-0没有副本节点。因此需要将node1上的数据迁移到node2、node3:

在这里插入图片描述

如有不足,请多指教,
未完待续,持续更新!
大家一起进步!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/185641.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

51单片机学习笔记-15 红外遥控

15 红外遥控 [toc] 注&#xff1a;笔记主要参考B站江科大自化协教学视频“51单片机入门教程-2020版 程序全程纯手打 从零开始入门”。 注&#xff1a;工程及代码文件放在了本人的Github仓库。 15.1 红外遥控与外部中断 15.1.1 红外遥控器 红外遥控是利用红外光进行通信的设备…

【MyBatis】| MyBatis参数处理(核心知识)

目录 一&#xff1a;MyBatis参数处理 1. 单个简单类型参数 2. Map参数 3. 实体类参数&#xff08;PoJo类&#xff09; 4. 多参数 5. Param注解&#xff08;命名参数&#xff09; 一&#xff1a;MyBatis参数处理 接口中方法的参数专栏&#xff01; 1. 单个简单类型参数 简…

RSA加密算法

RSA算法原理 非对称加密算法&#xff0c;有公钥和私钥之分通过公钥加密的数据必须通过私钥才能解密&#xff0c;反之&#xff0c;私钥加密的数据需要通过公钥解私钥能生成公钥&#xff0c;当公钥不能推导出私钥 欧拉函数 指小于n的正整数中与n互质的数的总个数&#xff08;记…

基于蜣螂算法优化的核极限学习机(KELM)回归预测-附代码

基于蜣螂算法优化的核极限学习机(KELM)回归预测 文章目录基于蜣螂算法优化的核极限学习机(KELM)回归预测1.KELM理论基础2.回归问题数据处理4.基于蜣螂算法优化的KELM5.测试结果6.Matlab代码摘要&#xff1a;本文利用蜣螂算法对核极限学习机(KELM)进行优化&#xff0c;并用于回归…

C 语言零基础入门教程(十九)

C 文件读写 上一章我们讲解了 C 语言处理的标准输入和输出设备。本章我们将介绍 C 程序员如何创建、打开、关闭文本文件或二进制文件。 一个文件&#xff0c;无论它是文本文件还是二进制文件&#xff0c;都是代表了一系列的字节。C 语言不仅提供了访问顶层的函数&#xff0c;也…

激光SLAM闭环方案总结

高质量的闭环是建图必不可少的元素之一。而激光SLAM不像视觉那样可以提供细致的纹理信息&#xff0c;因此常常出现误检和漏检的情况。最近&#xff0c;看了不少关于激光SLAM闭环方法的论文&#xff0c;总结一下。一、构建点云的描述子1、Scan Context&#xff08;2018&#xff…

抗抑郁药如何帮助细菌抵抗抗生素

谷禾健康 迄今为止最全面的全球抗菌素耐药性 (AMR) 研究发现&#xff0c;由耐药菌引起的感染是所有年龄段人群死亡的主要原因之一。 22年发表在《柳叶刀》杂志上的分析估计&#xff0c;2019 年有 495 万人死于细菌性 AMR 发挥作用的疾病。其中&#xff0c;127 万人死亡是 AMR 的…

如何使用matlab对时间序列进行ADF检验?|adftest函数(获取不同显著性下的统计结果)

ADF检验 迪基富勒检验&#xff08;ADF检验&#xff09;是一种常见的统计检验&#xff0c;用于检验给定时间序列是否平稳。在分析序列的平稳性时&#xff0c;它是最常用的统计检验之一。matlab中提供了函数adftest可以完成该检验&#xff0c;本文重点介绍该函数的用法。 Matla…

创建表和管理表

文章目录基础知识一条数据存储的过程标识符命名规则MySQL中的数据类型创建和管理数据库创建数据库使用数据库修改数据库删除数据库创建表创建方式1创建方式2查看数据表结构修改表追加一个列修改一个列重命名一个列删除一个列重命名表删除表清空表内容拓展拓展1&#xff1a;阿里…

setState的使用+React更新机制+events+受控和非受控组件

setState是异步更新 总结&#xff1a; 1.setState设计为异步&#xff0c;可以显著的提升性能 如果每次调用 setState都进行一次更新&#xff0c;那么意味着render函数会被频繁调用&#xff0c;界面重新染&#xff0c;这样效率是很低的&#xff1b;最好的办法应该是获取到多个更…

单片机开发---ESP32S3移植lvgl+触摸屏

书接上文 《单片机开发—ESP32-S3模块上手》 本章内容 熟悉一下ESP32S3的开发&#xff0c;修改范例程序的lvgl&#xff0c;使之能够匹配现在的显示屏。 具体工作大概为通过SPI接口连接一块SPI串口屏幕&#xff0c;并且适配lvgl&#xff0c;最后加上触摸屏作为输入。 屏幕 …

【计算机网络】第一章 计算机网络结构

文章目录第一章 体系结构1.1 计算机网络概述1.1.1 计算机网络的概念1.1.2 计算机网络的组成1.1.3 计算机网络的功能1.1.4 计算机网络的分类*1.1.5 计算机网络的标准化工作1.1.6 计算机网络的性能指标1.2 计算机网络体系结构与参考模型1.2.1 计算机网络分层结构1.2.2 计算机网络…

#8链表的中间结点#

链表的中间结点 1题目链接 链接 2思路 思路1:遍历一遍 计数 然后/2 再遍历一遍 思路2:slow fast指针 slow指针一次走1步 fast指针一次走2步 当fast为空的时候 slow的位置就是中间结点 奇数个: 1 2 3 4 5 fast走完第三次为空 slow走完第三次就是3 偶数个: 1 2 3 4 5 6 fast走完…

智慧型物业管理系统功能解析

随着当前社会经济的发展与科技发达&#xff0c;物业管理系统化已经成为常态了。尤其是随着智慧物业管理系统功能越来越多&#xff0c;人们对智慧物业管理系统的依赖就更明显了。毕竟系统真的可以给生活带来很多的便利之处&#xff1a; 业主可通过该系统查询自己住房的详细信息…

“揾”钱,最紧要系稳

我是腾讯安全的樊自磊。我们团队在腾讯主要负责金融风控产品&#xff0c;解决相关产品交付和服务维护工作&#xff0c;像国内知名大型国有银行、城商行、互联网金融公司等&#xff0c;都是我们的服务对象。今年春节&#xff0c;我和我的的同事们都在深圳为金融行业的网络安全进…

连续多输入多输出对象最优控制

连续多输入多输出对象最优控制 控制对象:平面二自由度机械臂 动力学模型: M ( q ) q + C ( q , q ) + G ( q ) =

【HDRP】自动生成的光照探针——Probe Volume

HDRP中&#xff0c;增加了Probe Volume&#xff0c;可代替旧版的光照探针Light Probe Group。 使用此功能的物体&#xff0c;不再需要光照贴图。 一、优缺点比较 详细说明可查看官方说明。 1.Probe Volume按像素而不是按对象发光&#xff0c;这意味着 HDRP 可以更准确地照亮…

软件著作权申请材料

(一)按要求填写的软件申请表; (二)软件的鉴别材料; 1、软件的操作手册&#xff1a;图文并茂的详细介绍软件的各功能&#xff0c;文档应不超过60页&#xff0c;超过60页应当删除中间内容&#xff0c;保留前后30页&#xff1b; 2、软件的源代码&#xff1a;每页不少于50行&…

Go第 15 章 :单元测试

Go第 15 章 &#xff1a;单元测试 15.1 先看一个需求 在我们工作中&#xff0c;我们会遇到这样的情况&#xff0c;就是去确认一个函数&#xff0c;或者一个模块的结果是否正确&#xff0c; 如&#xff1a; 15.2 传统的方法 15.2.1 传统的方式来进行测试 在 main 函数中&a…

k8s集群调度、亲和性、污点和容忍、pod状态、排障步骤

目录 一、调度约束 二、创建资源工作流程 三、Scheduler调度过程 1.Scheduler调度中考虑的问题 2.调度过程的步骤 3.预算策略&#xff08;predicate&#xff09;的常见算法 4.优选策略&#xff08;priorities&#xff09;的优先级 四、Pod 调度到指定Node节点 1.nodeNa…