【python】python海底捞门店营业数据分析与可视化(数据集+源码+论文)【独一无二】

news2025/1/16 8:13:48

请添加图片描述


👉博__主👈:米码收割机
👉技__能👈:C++/Python语言
👉公众号👈:测试开发自动化【获取源码+商业合作】
👉荣__誉👈:阿里云博客专家博主、51CTO技术博主
👉专__注👈:专注主流机器人、人工智能等相关领域的开发、测试技术。


python海底捞门店数据分析与可视化(数据集+源码+论文)【独一无二】


目录

  • python海底捞门店数据分析与可视化(数据集+源码+论文)【独一无二】
  • 一、设计要求
        • 项目背景
        • 主要功能
  • 二、设计思路
      • 1. 导入库和设置
      • 2. 读取数据
      • 3. 数据预览和基本信息
      • 4. 处理缺失值
      • 5. 处理异常值
      • 6. 处理重复值
      • 7. 数据转换
      • 8. 数据分组和统计分析
      • 9. 数据可视化
      • 总结


一、设计要求

项目背景

本项目旨在通过数据分析和可视化的方法,对海底捞门店的营业数据进行深入的探索和理解。数据来源于Excel文件《海底捞门店数据.xlsx》。项目包括数据预处理、缺失值处理、异常值处理、重复值处理、数据转换、分组统计分析和数据可视化。

主要功能
  1. 数据读取与预览

    • 从Excel文件中读取数据,展示数据的前几行,提供数据的基本信息,包括行列数、数据类型和非空数统计。
  2. 缺失值处理

    • 统计数据中的缺失值总数。
    • 提供两种处理缺失值的方法:删除含有缺失值的记录和用众数填充缺失值。
  3. 异常值处理

    • 使用箱型图可视化数据,识别异常值。
    • 提供两种去除异常值的方法:四分位数间距法(IQR)和3σ原则。
  4. 重复值处理

    • 检查并删除数据中的重复值。
  5. 数据转换

    • 将“省份”列转换为数值型数据,便于后续分析。
  6. 分组统计分析

    • 按省份分组统计各省店铺数量。
    • 按营业时长分组统计各时长区间内的店铺数量。
  7. 数据可视化

    • 可视化各省店铺数量分布。
    • 可视化营业时长分布。
    • 可视化开始营业时间分布。
    • 可视化结束营业时间分布。

二、设计思路

1. 导入库和设置

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

plt.rcParams['font.sans-serif']=['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
  • 导入必要的库:pandas用于数据处理,matplotlibseaborn用于数据可视化。
  • 设置绘图时中文字体的显示,确保中文标签能正常显示。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 门店 ” 获取。👈👈👈

2. 读取数据

file_path = '海底捞门店数据.xlsx'
df = pd.read_excel(file_path, engine='openpyxl')
  • 从Excel文件中读取数据到一个DataFrame中。

3. 数据预览和基本信息

print("数据预览:")
# 代码略....👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “门店” 获取。👈👈👈


print("缺失值总数:")
print(df.isnull().sum())

在这里插入图片描述

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 门店 ” 获取。👈👈👈

在这里插入图片描述

  • 打印数据的前几行,显示数据的基本信息(行列数、数据类型和非空数)。
  • 统计缺失值的总数。

4. 处理缺失值

# 删除含有缺失值的记录
# 代码略....
print(df_dropna.isnull().sum())

# 用众数填充缺失值
df_fillna = df.fillna(df.mode().iloc[0])
# 代码略....👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “门店” 获取。👈👈👈
print(df_fillna.isnull().sum())
  • 处理缺失值的方法包括:
    • 删除含有缺失值的记录。
    • 用众数填充缺失值。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 门店 ” 获取。👈👈👈

5. 处理异常值

# 箱型图识别异常值
plt.figure(figsize=(10, 6))
# 代码略....
plt.show()

# 四分位数间距法去除异常值
# 代码略....👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “门店” 获取。👈👈👈

IQR = Q3 - Q1
df_no_outliers = df[~((df['营业时长'] < (Q1 - 1.5 * IQR)) | (df['营业时长'] > (Q3 + 1.5 * IQR)))]
print("去除异常值后的数据行列数: ", df_no_outliers.shape)

# 3σ原则去除异常值
mean = df['营业时长'].mean()
# 代码略....👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “门店” 获取。👈👈👈

print("3σ原则去除异常值后的数据行列数: ", df_no_outliers_sigma.shape)

在这里插入图片描述

  • 使用箱型图可视化数据,识别异常值。
  • 使用四分位数间距法(IQR)和3σ原则去除异常值。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 门店 ” 获取。👈👈👈

在这里插入图片描述

6. 处理重复值

df_no_duplicates = df.drop_duplicates()
print("删除重复值后的数据行列数: ", df_no_duplicates.shape)
  • 删除重复值。

7. 数据转换

# 代码略....👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “门店” 获取。👈👈👈
print("转换后的数据预览:")
print(df.head())
  • 将“省份”列转换为数值型数据,便于后续分析。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 门店 ” 获取。👈👈👈

8. 数据分组和统计分析

# 按省份分组统计各省店铺数量
# 代码略....👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “门店” 获取。👈👈👈

print("按省份分组统计:")
print(province_group)
# 按营业时间长度分组统计
time_group = df.groupby('营业时长')['店名'].count().reset_index()
# 代码略....👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “门店” 获取。👈👈👈

print("按营业时间长度分组统计:")
print(time_group)

在这里插入图片描述

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 门店 ” 获取。👈👈👈

  • 按省份和营业时长分组,统计各组的店铺数量。

9. 数据可视化

# 店铺数量按省份分布
plt.figure(figsize=(14, 7))
# 代码略....
# 代码略....
plt.show()

在这里插入图片描述

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 门店 ” 获取。👈👈👈

# 营业时长分布
plt.figure(figsize=(10, 6))
# 代码略....
# 代码略....
plt.show()

在这里插入图片描述

# 开始营业时间分布
plt.figure(figsize=(10, 6))
# 代码略....
# 代码略....
plt.show()

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 门店 ” 获取。👈👈👈

在这里插入图片描述

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 门店 ” 获取。👈👈👈

# 结束营业时间分布
# 代码略....
# 代码略....
plt.show()
  • 可视化数据,展示各省店铺数量分布、营业时长分布、开始营业时间分布和结束营业时间分布。

在这里插入图片描述

总结

这段代码通过读取、预览、处理和分析数据,最后进行可视化展示。其设计思路清晰、结构完整,覆盖了数据处理和分析的多个方面,包括缺失值处理、异常值处理、重复值处理、数据转换、数据分组统计和数据可视化。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 门店 ” 获取。👈👈👈


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1853669.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

自2008年金融危机以来首次,欧洲AAA级CMBS投资者面临亏损

在欧洲预期损失之前&#xff0c;美国AAA级CMBS投资者已经遭受了打击。即便是最高信用等级的投资也不再安全&#xff0c;全球金融系统可能存在一些严重的问题。 历史罕见&#xff0c;最安全的AAA级债权人&#xff0c;在没有发生经济危机的情况下&#xff0c;出现了损失&#xff…

Pwn刷题记录(不停更新)

1、CTFshow-pwn04&#xff08;基础canary&#xff09; ​ 好久没碰过pwn了&#xff0c;今天临时做一道吧&#xff0c;毕竟刚联合了WSL和VSCode&#xff0c;想着试着做一道题看看&#xff0c;结果随手一点&#xff0c;就是一个很少接触的&#xff0c;拿来刷刷&#xff1a; ​ …

ClickHouse备份方案

ClickHouse备份方案主要包括以下几种方法&#xff1a; 一、使用clickhouse-backup工具&#xff1a; &#xff08;参考地址&#xff1a;https://blog.csdn.net/qq_43510111/article/details/136570850&#xff09; **安装与配置&#xff1a;**首先从GitHub获取clickhouse-bac…

apksigner jarsigner.md

关于作者&#xff1a;CSDN内容合伙人、技术专家&#xff0c; 从零开始做日活千万级APP。 专注于分享各领域原创系列文章 &#xff0c;擅长java后端、移动开发、商业变现、人工智能等&#xff0c;希望大家多多支持。 目录 一、导读二、概览三、apksigner3.2 为 APK 签名3.3 验证…

【深海王国】小学生都能玩的单片机?零基础入门单片机Arduino带你打开嵌入式的大门!(8)

Hi٩(๑o๑)۶, 各位深海王国的同志们&#xff0c;早上下午晚上凌晨好呀~辛勤工作的你今天也辛苦啦 (o゜▽゜)o☆ 今天大都督继续为大家带来系列——小学生都能玩的单片机&#xff01;带你一周内快速走进嵌入式的大门&#xff0c;let’s go&#xff01; &#xff08;8&#x…

系统安全设计规范(Word原件)

1.1安全建设原则 1.2 安全管理体系 1.3 安全管理规范 1.4 数据安全保障措施 1.4.1 数据库安全保障 1.4.2 操作系统安全保障 1.4.3 病毒防治 1.5安全保障措施 1.5.1实名认证保障 1.5.2 接口安全保障 1.5.3 加密传输保障 1.5.4终端安全保障 资料获取&#xff1a;私信或者进主页。…

PAT A1016. 最短路径

题意 有N个结点围成一个圈&#xff0c;相邻两个点之间的距离已知&#xff0c;且每次只能移动到相邻点。然后给出M个询问&#xff0c;每个询问给出两个数字A和B即结点编号(1≤A,B≤N)&#xff0c;求从A号结点到B号结点的最短距离。样例解释 如图3-2所示,共有5个结点&#xff0c;…

昇思25天学习打卡营第5天 | 网络构建

内容介绍&#xff1a;神经网络模型是由神经网络层和Tensor操作构成的&#xff0c;mindspore.nn提供了常见神经网络层的实现&#xff0c;在MindSpore中&#xff0c;Cell类是构建所有网络的基类&#xff0c;也是网络的基本单元。一个神经网络模型表示为一个Cell&#xff0c;它由不…

让你的Python代码更简洁:一篇文章带你了解Python列表推导式

文章目录 📖 介绍 📖🏡 演示环境 🏡📒 列表推导式 📒📝 语法📝 条件筛选📝 多重循环📝 列表推导式的优点📝 使用场景📝 示例代码🎯 示例1🎯 示例2⚓️ 相关链接 ⚓️📖 介绍 📖 在Python编程中,列表推导式是一种强大且高效的语法,它允许你用…

2024-06-17 问AI: 在深度学习中,harmonic mean是什么?

文心一言 在深度学习中&#xff0c;**harmonic mean&#xff08;调和平均数&#xff09;**是一个用于评估模型性能的指标&#xff0c;特别是在处理不平衡的数据集或需要综合多个评估指标的场景中。以下是关于harmonic mean在深度学习中应用的详细解释&#xff1a; 定义&#…

6 PXE高效批量网络装机

6.1部署PXE远程安装服务 在大规模的Liunx应用环境中&#xff0c;如web群集&#xff0c;分布式计算等&#xff0c;服务器往往并不配备光驱设备&#xff0c;在这种情况下&#xff0c;如何为数十乃至上百台服务器裸机快速安装系统呢&#xff1f;传统的USB光驱&#xff0c;移动硬盘…

【数学】100332. 包含所有 1 的最小矩形面积 II

本文涉及知识点 数学 LeetCode100332. 包含所有 1 的最小矩形面积 II 给你一个二维 二进制 数组 grid。你需要找到 3 个 不重叠、面积 非零 、边在水平方向和竖直方向上的矩形&#xff0c;并且满足 grid 中所有的 1 都在这些矩形的内部。 返回这些矩形面积之和的 最小 可能值…

一个整数使用英文表达的字母计数

题目&#xff1a; 把1到5写成英文单词分别是&#xff1a;one、two、three、four、five。这些单词一共用了33544 19 个字母。 如果把1到1000都写成英文单词&#xff0c;一共要用多少个字母&#xff1f; 注&#xff1a;不计入空格和连字符&#xff0c;例如&#xff0c;342&am…

CentOS 7 内核 3.10 升级 6.5.2 (RPM 直装 + 源码编译)

方案一 直接基于 RPM 在线升级&#xff08;简单&#xff0c;速度快&#xff09; rpm --import https://www.elrepo.org/RPM-GPG-KEY-elrepo.org yum install https://www.elrepo.org/elrepo-release-7.el7.elrepo.noarch.rpm -y # &#xff08;选项一&#xff09;升级最新版内…

linux系统cpu飙高如何排查

1.通过top命令查看cpu占比较高的进程ID 2.通过top -H -p <进程ID>命令查看该进程中具体线程&#xff0c;可以看到第一个线程 4311 占用了88.2%的cpu 3.通过 printf "%x\n" <线程ID> 把10进制的线程id转为16进制 4.通过jstack <进程ID> | grep &…

解决ArcGIS导出的svg格式的图片插入Word后的字体问题

背景 在ArcGIS中设置字体为Times New Roman&#xff0c;但导入Word后字体转为等线。 ArcGIS中的Layout 导入Word​​​​​​ 原因分析 Word无法识别嵌入进SVG格式文件中的字体。 解决方案 在Export Layer窗口中&#xff0c;将Embed fonts取消勾选&#xff0c;Convert cha…

【Python/Pytorch 】-- SVM算法

文章目录 文章目录 00 写在前面01 SVM算法简介02 SVM算法的基本原理线性SVM非线性SVM 03 基于Python 版本的SVM算法04 优化目标表达式理解&#xff1a;05 约束条件表达式理解 00 写在前面 SVM算法可以结合鲸鱼算法、飞蛾扑火算法、粒子群算法、灰狼算法、蝙蝠算法等等各种优化…

【Qt笔记①】帮助文档、窗口、按钮、信号和槽、lambda表达式

学习第一天&#xff1a;2024-3-9 文章目录 Qt creator 快捷键帮助文档默认生成的main.cpp逐行解释核心类帮助文档的查阅方法-①代码创建按钮第一个第二个对窗口的其他设置 对象树窗口坐标系信号和槽&#xff08;优点&#xff1a;松散耦合&#xff09;帮助文档的查阅方法-②找信…

【数据挖掘】机器学习中相似性度量方法-闵可夫斯基距离

写在前面&#xff1a; 首先感谢兄弟们的订阅&#xff0c;让我有创作的动力&#xff0c;在创作过程我会尽最大能力&#xff0c;保证作品的质量&#xff0c;如果有问题&#xff0c;可以私信我&#xff0c;让我们携手共进&#xff0c;共创辉煌。 路虽远&#xff0c;行则将至&#…

java周测总结(2)

1.什么是I0流. 是一串流动的字符从先进先出的方式发送信息的通道。 2.IO流共有多少种划分方式,分别都包含哪些流 三种 按流分 输出输入流 按处理单元分 字节和节符 按流的角色方 节点流和处理流 3.如何把字荐串交量str转换为字节数组,并且存入bytes数组当中 byt…