2024 AI大模型 常问的问题以及答案(附最新的AI大模型面试大厂题 )

news2024/11/20 4:22:36

前言

在2024年AI大模型的面试中,常问的问题以及答案可能会涵盖多个方面,包括AI大模型的基础知识、训练过程、应用、挑战和前沿趋势等。由于我无法直接附上174题的完整面试题库及其答案,我将基于提供的信息和当前AI大模型领域的热点,给出一些常见的问题和答案示例。

1. 基础知识

问题:请简要介绍目前主流的大模型体系有哪些?

答案
目前主流的大模型体系主要包括:

  • GPT系列:由OpenAI发布,基于Transformer架构的语言模型,包括GPT-1、GPT-2、GPT-3、ChatGPT等。这些模型具有强大的生成能力和语言理解能力。
  • BERT:由Google发布,一种基于Transformer架构的双向预训练语言模型。BERT在多个自然语言处理任务上取得了显著效果。
  • XLNet:由CMU和Google Brain发布,一种基于Transformer架构的自回归预训练语言模型。XLNet通过自回归方式预训练,能够建模全局依赖关系。
  • RoBERTa:由Meta(原Facebook)发布,基于BERT进行改进,通过更大规模的数据和更长的训练时间,取得了更好的性能。
  • T5:由Google发布,一种基于Transformer架构的多任务预训练语言模型。T5可以处理多种自然语言处理任务,如文本分类、机器翻译、问答等。

2. 训练过程

问题:大型语言模型(LLM)通常如何进行训练?

答案
大型语言模型通常经历预训练和微调两个过程。

  • 预训练:模型接触到来自多个来源的大量文本数据,从而扩展其知识库并广泛掌握语言。
  • 微调:为了提高性能,在特定任务或领域(例如,语言翻译或问答)上对预训练的模型进行再训练。

3. 应用

问题:LLM的典型应用有哪些?

答案
LLM有许多应用,包括但不限于:

  • 文本创作:如写作故事、文章或剧本。
  • 语言翻译:将一种语言翻译成另一种语言。
  • 文本摘要:自动提取长文本的主要内容。
  • 问答系统:回答用户提出的问题。
  • 情感分析:分析文本中的情感倾向。
  • 信息检索:从大量信息中检索出与用户需求相关的内容。
  • 代码开发:辅助编程人员编写代码,甚至自动生成代码片段。

4. 挑战和前沿趋势

问题:你认为当前AI大模型面临的主要挑战是什么?

答案
当前AI大模型面临的主要挑战包括:

  • 计算资源:大模型需要大量的计算资源进行训练和推理。
  • 数据偏见:训练数据中的偏见可能导致模型产生不公平或歧视性的结果。
  • 可解释性:大模型通常缺乏可解释性,使得人们难以理解其决策过程。
  • 模型效率:如何在保证性能的同时提高模型的效率,减少资源消耗。

面试题笔记分享

为了助力朋友们跳槽面试、升职加薪、职业困境,提高自己的技术,本文给大家整了一套涵盖Android所有技术栈的快速学习方法和笔记。目前已经收到了七八个网友的反馈,说是面试问到了很多这里面的知识点。

每一章节都是站在企业考察思维出发,作为招聘者角度回答。从考察问题延展到考察知识点,再到如何优雅回答一面俱全,可以说是求职面试的必备宝典,每一部分都有上百页内容,接下来具体展示,完整版可直接下方扫码领取。
😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

## 大模型(LLMs)基础面

1.目前 主流的开源模型体系 有哪些?
2.prefix LM 和 causal LM 区别是什么?
3.涌现能力是啥原因?
4.大模型 LLM的架构介绍?
大模型(LLMs)进阶面
1.llama 输入句子长度理论上可以无限长吗?
2.什么是 LLMs 复读机问题?
3.为什么会出现 LLMs 复读机问题?
4.如何缓解 LLMs 复读机问题?
5.LLMs 复读机问题
6.lama 系列问题
7.什么情况用 Bert模型,什么情况用LLaMA、ChatGLM类大模型,咋选?8.各个专业领域是否需要各自的大模型来服务?
9.如何让大模型处理更长的文本?

大模型(LLMs)微调面

1.如果想要在某个模型基础上做全参数微调,究竟需要多少显存?
2.为什么 SFT之后感觉 LLM傻了?
3.SFT 指令微调数据 如何构建?
4.领域模型 Continue PreTrain 数据选取?5.领域数据训练后,通用能力往往会有所下降,如何缓解模型遗忘通用能力?
6.领域模型 Continue PreTrain ,如何 让模型在预训练过程中就学习到更多的知识?7.进行 SFT操作的时候,基座模型选用Chat还是 Base?
8.领域模型微调 指令&数据输入格式 要求?
9.领域模型微调 领域评测集 构建?
10.领域模型词表扩增是不是有必要的?
11.如何训练自己的大模型?
12.训练中文大模型有啥经验?
13.指令微调的好处?
14.预训练和微调哪个阶段注入知识的?15.想让模型学习某个领域或行业的知识,是
应该预训练还是应该微调?
16.多轮对话任务如何微调模型?
17.微调后的模型出现能力劣化,灾难性遗忘
是怎么回事?

大模型(LLMs)langchain面

1.基于 LLM+向量库的文档对话 基础面
2.基于 LLM+向量库的文档对话 优化面
3.LLMs 存在模型幻觉问题,请问如何处理?
4.基于 LLM+向量库的文档对话 思路是怎么样?
5.基于 LLM+向量库的文档对话 核心技术是什么?
6.基于 LLM+向量库的文档对话 prompt 模板如何构建?
7.痛点1:文档切分粒度不好把控,既担心噪声太多又担心语义信息丢失
2.痛点2:在基于垂直领域 表现不佳
3.痛点 3:langchain 内置 问答分句效果不佳问题
4.痛点 4:如何 尽可能召回与 query相关的Document 问题
5.痛点5:如何让 LLM基于 query和 context
得到高质量的response
6.什么是 LangChain?
7.LangChain 包含哪些 核心概念?
8.什么是 LangChain Agent?
9.如何使用 LangChain ?
10.LangChain 支持哪些功能?
11.什么是 LangChain model?
12.LangChain 包含哪些特点?

大模型(LLMs):参数高效微调(PEFT)面

1.LORA篇2.QLoRA篇
3.AdaLoRA篇
4.LORA权重是否可以合入原模型?
5.LORA 微调优点是什么?
6.LORA微调方法为啥能加速训练?
7.如何在已有 LORA模型上继续训练?
1.1 什么是 LORA?
1.2 LORA 的思路是什么?
1.3 LORA 的特点是什么?
2.1 QLORA 的思路是怎么样的?
2.2 QLORA 的特点是什么?
8.3.1 AdaLoRA 的思路是怎么样的?为什么需
要 提示学习(Prompting)?
9.什么是 提示学习(Prompting)?10.提示学习(Prompting)有什么优点?11.提示学习(Prompting)有哪些方法,能不能稍微介绍一下它们间?
4.4.1为什么需要 P-tuning v2?
4.4.2 P-tuning v2 思路是什么?
4.4.3 P-tuning v2 优点是什么?
4.4.4 P-tuning v2 缺点是什么?
4.3.1为什么需要 P-tuning?

😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

## 大模型评测面(LLMs)三

大模型怎么评测?
大模型的 honest原则是如何实现的?模型如何判断回答的知识是训练过的已知的知识,怎么训练这种能力?大模型(LLMs)强化学习面奖励模型需要和基础模型一致吗?RLHF 在实践过程中存在哪些不足?如何解决 人工产生的偏好数据集成本较高很难量产问题?如何解决三个阶段的训练(SFT->RM->PPO)过程较长,更新迭代较慢问题?如何解决 PPO 的训练过程同时存在4个模型(2训练,2推理),对计算资源的要求较高问题?

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1838207.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

神经网络模型---ResNet

一、ResNet 1.导入包 import tensorflow as tf from tensorflow.keras import layers, models, datasets, optimizersoptimizers是用于更新模型参数以最小化损失函数的算法 2.加载数据集、归一化、转为独热编码的内容一致 3.增加颜色通道 train_images train_images[...,…

lucene原理

一、正排索引 Lucene的基础层次结构由索引、段、文档、域、词五个部分组成。正向索引的生成即为基于Lucene的基础层次结构一级一级处理文档并分解域存储词的过程。 索引文件层级关系如图1所示: 索引:Lucene索引库包含了搜索文本的所有内容&#xff0…

window端口占用情况及state解析

背景: 在电脑使用过程中,经常会开许多项目,慢慢地发现电脑越来越卡,都不知道到底是在跑什么项目导致,于是就想查看一下电脑到底在跑什么软件和项目,以作记录。 常用命令 netstat -tuln : 使用…

【YOLOv8改进[注意力]】使用CascadedGroupAttention(2023)注意力改进c2f + 含全部代码和详细修改方式 + 手撕结构图

本文将进行在YOLOv8中使用CascadedGroupAttention注意力改进c2f 的实践,助力YOLOv8目标检测效果的实践,文中含全部代码、详细修改方式以及手撕结构图。助您轻松理解改进的方法。 改进前和改进后的参数对比: 目录 一 CascadedGroupAttention 二 使用CascadedGroupAttent…

《Linux运维总结:prometheus+altermanager+webhook-dingtalk配置文件详解》

总结:整理不易,如果对你有帮助,可否点赞关注一下? 更多详细内容请参考:《Linux运维篇:Linux系统运维指南》 一、prometheus配置文件 Prometheus的配置文件是prometheus.yml,在启动时指定相关的…

ECharts综合案例一:近七天跑步数据

一周跑步数据图表分析 引言 在运动数据分析中,可视化工具能够帮助我们更直观地理解运动表现。本周,我们使用 ECharts 创建了一组图表,包括雷达图和折线图,来展现跑步数据。 效果预览 收集了一周内每天的跑步数据,通…

中医药人工智能大模型正式启动

6月15日,在横琴粤澳深度合作区举行的中医药广东省实验室(以下简称横琴实验室)第一届学术委员会第一次会议暨首届横琴中医药科技创新大会上,中医药横琴大模型、中药新药智能自动化融合创新平台同时启动。这也是该实验室揭牌半年来取…

西班牙的人工智能医生

西班牙的人工智能医生 西班牙已将自己定位为欧洲负责任人工智能领域的领导者。然而,透明度的承诺往往落空,公共监督机构一直难以获得对司法和福利系统中部署的算法的有效访问。这使得西班牙成为一种日益增长的趋势的一部分,即政府悄悄地试验预…

Python邮件加密传输如何实现?有哪些技巧?

Python邮件怎么设置服务器?如何使用Python发送邮件? 为了确保邮件内容在传输过程中不被窃听或篡改,使用加密传输是必不可少的。在使用Python邮件传输时,加密传输是保障信息安全的关键手段。AokSend将详细探讨Python邮件加密传输的…

全域外卖系统源码部署怎么做,外卖市场新机遇!

随着本地生活下半场的到来,全域外卖逐渐成为众多创业者关注的焦点,再加上抖音关于新增《【到家外卖】内容服务商开放准入公告》的意见征集通知(以下简称“通知”)的发布,更是将当前全域外卖赛道重点入局方式之一的全域…

Coco Test Engine:代码覆盖率分析的新时代

本文翻译自:Coco Test Engine – The New Era of Code Coverage Analysis 原文作者:Qt Group首席软件工程师Sbastien Fricker 审校:Felix Zhang 我们的Coco 7重大更新带来了一个长期以来备受期待的功能——测试数据生成(即Coco …

南充文化旅游职业学院领导一行莅临泰迪智能科技参观交流

6月18日,南充文化旅游职业学院旅游系副书记刘周、教务处教学运行与质量保障科科长及智慧旅游技术应用专业教研室主任李月娴、大数据技术专业负责人 龙群才、大数据技术专业专任教师 李昱洁莅临泰迪智能科技产教融合实训中心参观交流。泰迪智能科技董事长张良均、副总…

Mac安装 VirtualBox虚拟机

在Mac上安装VirtualBox虚拟机的步骤如下: 步骤1:下载VirtualBox 首先,你需要访问Oracle VM VirtualBox官网 https://www.virtualbox.org,然后在下载页面选择对应的Mac版本下载。 步骤2:打开下载的安装包 下载完成后…

Java预约家政5.0服务本地服务源码(APP+小程序+公众号+H5)

预约家政本地服务平台系统:一站式解决家居需求🏠💼 一、引言:开启便捷家居新时代 在快节奏的现代生活中,我们渴望拥有更多的时间和精力去享受生活,而不是被繁琐的家务所困扰。预约家政本地服务平台系统应…

人工智能--自然语言处理NLP概述

欢迎来到 Papicatch的博客 目录 🍉引言 🍈基本概念 🍈核心技术 🍈常用模型和方法 🍈应用领域 🍈挑战和未来发展 🍉案例分析 🍈机器翻译中的BERT模型 🍈情感分析在…

PDF密码暴力破解工具,Advanced PDF Password Recovery Enterprise

相信大家从网上下载或者购买PDF文件后,打开后发现被PDF被加密了,没有办法进行修改,也没有办法进行任何操作,这是不是让你很苦恼,今天分享的这个软件就可以很好的解决这个问题,他可以解锁被加密的PDF文件&am…

网络文件如何异地共享?

在数字化时代,文件的共享与访问已成为工作和生活中不可或缺的一部分。由于网络环境的限制,远程连接问题常常困扰着我们。而今,在这个问题的解决方案中,【天联】组网技术凭借其独特的优势崭露头角,成为了实现网络文件异…

Rapidfuzz,一个高效的 Python 模糊匹配神器

目录 01初识 Rapidfuzz 什么是 Rapidfuzz? 为什么选择 Rapidfuzz? 安装 Rapidfuzz 配置 Rapidfuzz 02基本操作 简单比率计算 03高级功能 查找单个最佳匹配 查找多个最佳匹配 使用阈值优化性能 04实战案例…

TikTok电商带货指南:策略、技巧与流量获取全解析

随着短视频平台的迅猛发展,TikTok已成为品牌和个人进行带货营销的主要阵地之一。通过有创意的内容、有效的互动方式和精准的流量获取策略,品牌和个人都能在TikTok上取得显著的带货效果。本文Nox聚星将和大家探讨在TikTok上进行带货营销的有效策略和技巧&…

搜维尔科技:SenseGlove虚拟训练、VR/AR 模拟和研究中的触觉反馈

训练 传统培训成本高昂且风险大,需要重复资产或停产。在培训中使用虚拟现实可以轻松解决这些问题。借助 SenseGlove,终于可以研究和评估与传统培训效果相同的虚拟培训技术。体验低成本的定制 VR 培训,同时保留现实世界的肌肉记忆和记忆力。 …