基于STM32和人工智能的智能气象站系统

news2024/11/24 0:07:40

目录

  1. 引言
  2. 环境准备
  3. 智能气象站系统基础
  4. 代码实现:实现智能气象站系统
    • 4.1 数据采集模块
    • 4.2 数据处理与分析
    • 4.3 控制系统
    • 4.4 用户界面与数据可视化
  5. 应用场景:智能气象管理与优化
  6. 问题解决方案与优化
  7. 收尾与总结

1. 引言

随着气象科技的进步,智能气象站在气象监测、环境研究和农业生产中起到了至关重要的作用。通过人工智能算法对气象数据进行分析,可以实现更加精准的天气预测和环境监测。本文将详细介绍如何在STM32嵌入式系统中结合人工智能技术实现一个智能气象站系统,包括环境准备、系统架构、代码实现、应用场景及问题解决方案和优化方法。

2. 环境准备

硬件准备

  • 开发板:STM32F407 Discovery Kit
  • 调试器:ST-LINK V2或板载调试器
  • 温湿度传感器:如DHT22
  • 气压传感器:如BMP280
  • 风速风向传感器:用于检测风速和风向
  • 雨量传感器:用于检测降雨量
  • 显示屏:如TFT LCD显示屏
  • 按键或旋钮:用于用户输入和设置
  • 电源:12V或24V电源适配器

软件准备

  • 集成开发环境(IDE):STM32CubeIDE或Keil MDK
  • 调试工具:STM32 ST-LINK Utility或GDB
  • 库和中间件:STM32 HAL库、TensorFlow Lite
  • 人工智能模型:用于数据分析和预测

安装步骤

  1. 下载并安装 STM32CubeMX
  2. 下载并安装 STM32CubeIDE
  3. 配置STM32CubeMX项目并生成STM32CubeIDE项目
  4. 安装必要的库和驱动程序
  5. 下载并集成 TensorFlow Lite 库

3. 智能气象站系统基础

控制系统架构

智能气象站系统由以下部分组成:

  • 数据采集模块:用于采集气象数据(温湿度、气压、风速风向、降雨量等)
  • 数据处理与分析:使用人工智能算法对采集的数据进行分析和预测
  • 控制系统:根据分析结果控制显示和预警装置
  • 显示系统:用于显示气象数据和系统状态
  • 用户输入系统:通过按键或旋钮进行设置和调整

功能描述

通过温湿度传感器、气压传感器、风速风向传感器和雨量传感器采集气象数据,并使用人工智能算法进行分析和预测,实时显示和记录气象数据,实现智能化的气象监测和管理。用户可以通过按键或旋钮进行设置,并通过显示屏查看当前状态和预测结果。

4. 代码实现:实现智能气象站系统

4.1 数据采集模块

配置DHT22温湿度传感器
使用STM32CubeMX配置GPIO接口:

打开STM32CubeMX,选择您的STM32开发板型号。
在图形化界面中,找到需要配置的GPIO引脚,设置为输入模式。
生成代码并导入到STM32CubeIDE中。

代码实现

#include "stm32f4xx_hal.h"
#include "dht22.h"

void DHT22_Init(void) {
    // 初始化DHT22传感器
}

void DHT22_Read_Data(float* temperature, float* humidity) {
    // 读取DHT22传感器的温度和湿度数据
}

int main(void) {
    HAL_Init();
    SystemClock_Config();
    DHT22_Init();

    float temperature, humidity;

    while (1) {
        DHT22_Read_Data(&temperature, &humidity);
        HAL_Delay(2000);
    }
}

配置BMP280气压传感器
使用STM32CubeMX配置I2C接口:

打开STM32CubeMX,选择您的STM32开发板型号。
在图形化界面中,找到需要配置的I2C引脚,设置为I2C模式。
生成代码并导入到STM32CubeIDE中。

代码实现

#include "stm32f4xx_hal.h"
#include "bmp280.h"

I2C_HandleTypeDef hi2c1;

void I2C_Init(void) {
    __HAL_RCC_I2C1_CLK_ENABLE();

    hi2c1.Instance = I2C1;
    hi2c1.Init.ClockSpeed = 100000;
    hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2;
    hi2c1.Init.OwnAddress1 = 0;
    hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
    hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
    hi2c1.Init.OwnAddress2 = 0;
    hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
    hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
    HAL_I2C_Init(&hi2c1);
}

void BMP280_Init(void) {
    BMP280_Init(&hi2c1);
}

float Read_Pressure(void) {
    return BMP280_ReadPressure(&hi2c1);
}

int main(void) {
    HAL_Init();
    SystemClock_Config();
    I2C_Init();
    BMP280_Init();

    float pressure;

    while (1) {
        pressure = Read_Pressure();
        HAL_Delay(1000);
    }
}

配置风速风向传感器
使用STM32CubeMX配置GPIO和ADC接口:

打开STM32CubeMX,选择您的STM32开发板型号。
在图形化界面中,找到需要配置的GPIO和ADC引脚,设置为输入模式。
生成代码并导入到STM32CubeIDE中。

代码实现

#include "stm32f4xx_hal.h"

ADC_HandleTypeDef hadc1;

void ADC_Init(void) {
    __HAL_RCC_ADC1_CLK_ENABLE();

    ADC_ChannelConfTypeDef sConfig = {0};

    hadc1.Instance = ADC1;
    hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;
    hadc1.Init.Resolution = ADC_RESOLUTION_12B;
    hadc1.Init.ScanConvMode = DISABLE;
    hadc1.Init.ContinuousConvMode = ENABLE;
    hadc1.Init.DiscontinuousConvMode = DISABLE;
    hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
    hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
    hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
    hadc1.Init.NbrOfConversion = 1;
    hadc1.Init.DMAContinuousRequests = DISABLE;
    hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
    HAL_ADC_Init(&hadc1);

    sConfig.Channel = ADC_CHANNEL_0;
    sConfig.Rank = 1;
    sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;
    HAL_ADC_ConfigChannel(&hadc1, &sConfig);
}

uint32_t Read_Wind_Speed(void) {
    HAL_ADC_Start(&hadc1);
    HAL_ADC_PollForConversion(&hadc1, HAL_MAX_DELAY);
    return HAL_ADC_GetValue(&hadc1);
}

uint32_t Read_Wind_Direction(void) {
    HAL_ADC_Start(&hadc1);
    HAL_ADC_PollForConversion(&hadc1, HAL_MAX_DELAY);
    return HAL_ADC_GetValue(&hadc1);
}

int main(void) {
    HAL_Init();
    SystemClock_Config();
    ADC_Init();

    uint32_t wind_speed;
    uint32_t wind_direction;

    while (1) {
        wind_speed = Read_Wind_Speed();
        wind_direction = Read_Wind_Direction();
        HAL_Delay(1000);
    }
}

配置雨量传感器
使用STM32CubeMX配置GPIO接口:

打开STM32CubeMX,选择您的STM32开发板型号。
在图形化界面中,找到需要配置的GPIO引脚,设置为输入模式。
生成代码并导入到STM32CubeIDE中。

代码实现

#include "stm32f4xx_hal.h"

#define RAIN_SENSOR_PIN GPIO_PIN_0
#define GPIO_PORT GPIOA

void GPIO_Init(void) {
    __HAL_RCC_GPIOA_CLK_ENABLE();

    GPIO_InitTypeDef GPIO_InitStruct = {0};
    GPIO_InitStruct.Pin = RAIN_SENSOR_PIN;
    GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
    GPIO_InitStruct.Pull = GPIO_NOPULL;
    HAL_GPIO_Init(GPIO_PORT,
HAL_GPIO_Init(GPIO_PORT, &GPIO_InitStruct);
}

uint8_t Read_Rain_Sensor(void) {
    return HAL_GPIO_ReadPin(GPIO_PORT, RAIN_SENSOR_PIN);
}

int main(void) {
    HAL_Init();
    SystemClock_Config();
    GPIO_Init();

    uint8_t rain_state;

    while (1) {
        rain_state = Read_Rain_Sensor();
        HAL_Delay(1000);
    }
}

4.2 数据处理与分析

集成TensorFlow Lite进行数据分析
使用STM32CubeMX配置必要的接口,确保嵌入式系统能够加载和运行TensorFlow Lite模型。

代码实现

#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/micro/micro_interpreter.h"
#include "tensorflow/lite/micro/micro_error_reporter.h"
#include "tensorflow/lite/micro/micro_mutable_op_resolver.h"
#include "tensorflow/lite/schema/schema_generated.h"
#include "tensorflow/lite/version.h"
#include "model_data.h"  // 人工智能模型数据

namespace {
    tflite::MicroErrorReporter micro_error_reporter;
    tflite::MicroInterpreter* interpreter = nullptr;
    TfLiteTensor* input = nullptr;
    TfLiteTensor* output = nullptr;
    constexpr int kTensorArenaSize = 2 * 1024;
    uint8_t tensor_arena[kTensorArenaSize];
}

void AI_Init(void) {
    tflite::InitializeTarget();

    static tflite::MicroMutableOpResolver<10> micro_op_resolver;
    micro_op_resolver.AddFullyConnected();
    micro_op_resolver.AddSoftmax();

    const tflite::Model* model = tflite::GetModel(model_data);
    if (model->version() != TFLITE_SCHEMA_VERSION) {
        TF_LITE_REPORT_ERROR(&micro_error_reporter,
                             "Model provided is schema version %d not equal "
                             "to supported version %d.",
                             model->version(), TFLITE_SCHEMA_VERSION);
        return;
    }

    static tflite::MicroInterpreter static_interpreter(
        model, micro_op_resolver, tensor_arena, kTensorArenaSize,
        &micro_error_reporter);
    interpreter = &static_interpreter;

    interpreter->AllocateTensors();

    input = interpreter->input(0);
    output = interpreter->output(0);
}

void AI_Run_Inference(float* input_data, float* output_data) {
    // 拷贝输入数据到模型输入张量
    for (int i = 0; i < input->dims->data[0]; ++i) {
        input->data.f[i] = input_data[i];
    }

    // 运行模型推理
    if (interpreter->Invoke() != kTfLiteOk) {
        TF_LITE_REPORT_ERROR(&micro_error_reporter, "Invoke failed.");
        return;
    }

    // 拷贝输出数据
    for (int i = 0; i < output->dims->data[0]; ++i) {
        output_data[i] = output->data.f[i];
    }
}

int main(void) {
    HAL_Init();
    SystemClock_Config();
    AI_Init();

    float input_data[INPUT_SIZE];
    float output_data[OUTPUT_SIZE];

    while (1) {
        // 获取传感器数据,填充 input_data 数组
        // 运行AI推理
        AI_Run_Inference(input_data, output_data);

        // 根据模型输出数据执行相应的操作
        HAL_Delay(1000);
    }
}

4.3 控制系统

配置GPIO控制报警和LED指示灯
使用STM32CubeMX配置GPIO:

打开STM32CubeMX,选择您的STM32开发板型号。
在图形化界面中,找到需要配置的GPIO引脚,设置为输出模式。
生成代码并导入到STM32CubeIDE中。

代码实现

#include "stm32f4xx_hal.h"

#define ALARM_PIN GPIO_PIN_1
#define LED_PIN GPIO_PIN_2
#define GPIO_PORT GPIOB

void GPIO_Init(void) {
    __HAL_RCC_GPIOB_CLK_ENABLE();

    GPIO_InitTypeDef GPIO_InitStruct = {0};
    GPIO_InitStruct.Pin = ALARM_PIN | LED_PIN;
    GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
    GPIO_InitStruct.Pull = GPIO_NOPULL;
    GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
    HAL_GPIO_Init(GPIO_PORT, &GPIO_InitStruct);
}

void Control_Alarm(uint8_t state) {
    HAL_GPIO_WritePin(GPIO_PORT, ALARM_PIN, state ? GPIO_PIN_SET : GPIO_PIN_RESET);
}

void Control_LED(uint8_t state) {
    HAL_GPIO_WritePin(GPIO_PORT, LED_PIN, state ? GPIO_PIN_SET : GPIO_PIN_RESET);
}

int main(void) {
    HAL_Init();
    SystemClock_Config();
    GPIO_Init();
    AI_Init();

    float input_data[INPUT_SIZE];
    float output_data[OUTPUT_SIZE];

    while (1) {
        // 获取传感器数据,填充 input_data 数组
        // 运行AI推理
        AI_Run_Inference(input_data, output_data);

        // 根据AI输出控制报警和LED灯
        uint8_t alarm_state = output_data[0] > 0.5;
        uint8_t led_state = output_data[1] > 0.5;

        Control_Alarm(alarm_state);
        Control_LED(led_state);

        HAL_Delay(1000);
    }
}

4.4 用户界面与数据可视化

配置TFT LCD显示屏
使用STM32CubeMX配置SPI接口:

打开STM32CubeMX,选择您的STM32开发板型号。
在图形化界面中,找到需要配置的SPI引脚,设置为SPI模式。
生成代码并导入到STM32CubeIDE中。

代码实现

#include "stm32f4xx_hal.h"
#include "spi.h"
#include "lcd_tft.h"

void Display_Init(void) {
    LCD_TFT_Init();
}

void Display_Weather_Data(float* output_data) {
    char buffer[32];
    sprintf(buffer, "Temp: %.2f C", output_data[0]);
    LCD_TFT_Print(buffer);
    sprintf(buffer, "Humidity: %.2f %%", output_data[1]);
    LCD_TFT_Print(buffer);
    sprintf(buffer, "Pressure: %.2f hPa", output_data[2]);
    LCD_TFT_Print(buffer);
    sprintf(buffer, "Wind Speed: %d m/s", (int)output_data[3]);
    LCD_TFT_Print(buffer);
    sprintf(buffer, "Wind Direction: %d", (int)output_data[4]);
    LCD_TFT_Print(buffer);
    sprintf(buffer, "Rain: %s", output_data[5] > 0.5 ? "YES" : "NO");
    LCD_TFT_Print(buffer);
}

int main(void) {
    HAL_Init();
    SystemClock_Config();
    GPIO_Init();
    DHT22_Init();
    BMP280_Init();
    ADC_Init();
    AI_Init();
    Display_Init();

    float input_data[INPUT_SIZE];
    float output_data[OUTPUT_SIZE];

    while (1) {
        // 读取传感器数据并填充 input_data 数组
        // 运行AI推理
        AI_Run_Inference(input_data, output_data);

        // 显示气象数据和AI结果
        Display_Weather_Data(output_data);

        // 根据AI结果控制报警和LED灯
        uint8_t alarm_state = output_data[6] > 0.5;
        uint8_t led_state = output_data[7] > 0.5;

        Control_Alarm(alarm_state);
        Control_LED(led_state);

        HAL_Delay(1000);
    }
}

5. 应用场景:智能气象管理与优化

农业气象

智能气象站可以应用于农业,通过实时监控和预测天气情况,为农作物的种植和管理提供数据支持。

环境监测

在环境监测领域,智能气象站可以用于监控大气环境参数,为环保工作提供科学依据。

气象科研

智能气象站在气象科研中具有重要作用,通过精准的数据采集和分析,推动气象科学的发展。

⬇帮大家整理了单片机的资料

包括stm32的项目合集【源码+开发文档】

点击下方蓝字即可领取,感谢支持!⬇

点击领取更多嵌入式详细资料

问题讨论,stm32的资料领取可以私信!

 

6. 问题解决方案与优化

常见问题及解决方案

  1. 传感器数据不准确:确保传感器与STM32的连接稳定,定期校准传感器以获取准确数据。
  2. 设备响应延迟:优化控制逻辑和硬件配置,减少设备响应时间,提高系统反应速度。
  3. 显示屏显示异常:检查SPI通信线路,确保显示屏与MCU之间的通信正常,避免由于线路问题导致的显示异常。

优化建议

  1. 数据集成与分析:集成更多类型的传感器数据,使用大数据分析和机器学习技术进行环境预测和趋势分析。
  2. 用户交互优化:改进用户界面设计,提供更直观的数据展示和更简洁的操作界面,增强用户体验。
  3. 智能化控制提升:增加智能决策支持系统,根据历史数据和实时数据自动调整控制策略,实现更高效的气象管理。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1829716.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

tokenization(二)子词切分方法

文章目录 概述BPE构建词表词元化代码实现 WordPieceUnigram估算概率&#xff08;E&#xff09;删除词元&#xff08;M&#xff09; 参考资料 概述 接上回&#xff0c;子词词元化&#xff08;Subwords tokenization&#xff09;是平衡字符级别和词级别的一种方法&#xff0c;也…

【Java】已解决java.lang.NoClassDefFoundError异常

文章目录 一、问题背景二、可能出错的原因三、错误代码示例四、正确代码示例五、注意事项 已解决java.lang.NoClassDefFoundError异常 一、问题背景 java.lang.NoClassDefFoundError 是 Java 运行时环境&#xff08;JRE&#xff09;在尝试加载某个类时&#xff0c;但没有找到…

【Java】已解决:Java.lang.OutOfMemoryError: GC overhead limit exceeded

文章目录 问题背景可能出错的原因错误代码示例正确代码示例注意事项 问题背景 java.lang.OutOfMemoryError: GC overhead limit exceeded 是Java虚拟机&#xff08;JVM&#xff09;在运行时遇到的一种内存溢出错误。这种错误通常发生在应用程序的堆内存&#xff08;Heap Memor…

异或运算的原理以及应用

异或&#xff08;XOR&#xff09;是计算机科学和数字电路中常用的运算之一。异或运算符通常用符号“⊕”或“^”表示&#xff0c;它有着简单而独特的性质&#xff0c;使其在数据加密、错误检测与纠正等多个领域得到了广泛的应用。在网络上我们传输的每一比特数据都经过了异或运…

【深度学习量化交易1】一个金融小白尝试量化交易的设想、畅享和遐想

关注我的朋友们可能知道&#xff0c;我经常在信号处理的领域出没&#xff0c;时不时会发一些信号处理、深度学习科普向的文章。 不过算法研究久了&#xff0c;总想做一些更有趣的事情。 比如用深度学习算法赚大钱。。毕竟有什么事情能比暴富更有意思呢。 一、神经网络与彩票…

嵌入式复古游戏项目开发与实现

大家好,今天看到一个火柴盒项目,非常的小巧,分享给大家,感兴趣的话,可以复刻一个玩一玩。 MicroByte 是一款微型主机,能够运行 NES、GameBoy、GameBoy Color、Game Gear 和 Sega Master 系统的游戏,所有元器件都设计在这 78 x 17 x 40 mm 的封装中。尽管成品尺寸很小,但…

探索AI创新的前沿——从零开始学习和运用SpringAI

1.SpringAI介绍 SpringAI是AI工程师的一个应用框架&#xff0c;它提供了一个友好的API和开发AI应用的抽象&#xff0c;旨在简化AI应用的开发工序。 目标是将可移植性和模块化设计等设计原则应用于AI领域的Spring生态系统&#xff0c;并将POJO作为应用程序的构建块推广到AI领域…

Java语法和基本结构介绍

Java语法和基本结构是Java编程的基础&#xff0c;它决定了Java代码的书写方式和程序的结构。以下是Java语法和基本结构的一些关键点&#xff1a; 1.标识符和关键字&#xff1a;Java中的标识符是用来标识变量、函数、类或其他用户自定义元素的名称。关键字是预留的标识符&#x…

文章解读与仿真程序复现思路——电工技术学报EI\CSCD\北大核心《计及台风时空特性和灵活性资源协同优化的配电网弹性提升策略》

本专栏栏目提供文章与程序复现思路&#xff0c;具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》 论文与完整源程序_电网论文源程序的博客-CSDN博客https://blog.csdn.net/liang674027206/category_12531414.html 电网论文源程序-CSDN博客电网论文源…

树的基本概念

树(Tree) "树"这种数据很像现实生活中的“树”&#xff0c; 这里的每个元素我们叫做“节点” 用来连线相邻节点之间的关系&#xff0c;我们叫做“父子关系” A节点就是B节点的父节点&#xff0c;B节点是A节点的‘子节点’B&#xff0c;C&#xff0c;D这三个节点的…

Dockerfile 自定义镜像

大家好 , 今天我要和大家分享一个现代软件开发中不可或缺的工具 - Docker . 在这个快速发展的技术时代 , 我们经常面临着应用部署的复杂性、环境差异以及不同操作系统之间的兼容性问题 . 这些问题不仅消耗大量时间 , 还可能导致项目延期和成本增加 . Docker 的出现解决了我们在…

利用stream软件工具免费下载视频号视频,亲测可长期使用!

今天来说说stream软件工具下载视频号视频的工具&#xff0c;也是全网唯一利用手机下载视频号的视频方法&#xff01;经过自己的研究发现,互联网上80%都不知道的下载方法&#xff01; stream 网络数据流 stream是通过数据流可查看平台给服务器发送了什么请求&#xff0c;要服务…

BetterZip 5软件详细安装步骤(最新版软件下载)

​BetterZip是一款功能强大的Mac解/压缩软件&#xff0c;可以满足用户对文件压缩、解压、加密和保护等方面的需求。以下是关于BetterZip软件的主要功能、特点和使用方法的详细介绍&#xff0c;以及对其用户友好度、稳定性和安全性的评价。 安 装 包 获 取 地 址: BetterZip 5-…

混淆矩阵-召回率、精确率、准确率

混淆矩阵 1 混淆矩阵2 混淆矩阵指标2.1 准确率2.2 精确率2.3 召回率2.4 特异度2.4 假正率2.5 假负率2.6 F1 分数 3 总结 1 混淆矩阵 混淆矩阵是一种用于评估分类模型性能的重要工具。它通过矩阵形式清晰地展示了模型对样本进行分类的结果&#xff0c;帮助我们理解模型在不同类…

[C++] 从零实现一个ping服务

&#x1f4bb;文章目录 前言ICMP概念报文格式 Ping服务实现系统调用函数具体实现运行测试 总结 前言 ping命令&#xff0c;因为其简单、易用等特点&#xff0c;几乎所有的操作系统都内置了一个ping命令。如果你是一名C初学者&#xff0c;对网络编程、系统编程有所了解&#xff…

使用百度的长文本转语音API时无法下载.MP3文件

今天是学生们交作业的时候&#xff0c;结果是我最忙碌的一天&#xff0c;各种改bug。 有个学生来问&#xff1a; 我在百度提供的API代码(长文本转语音)的基础上添加了下载生成的.MP3文件的代码&#xff0c;运行之后成功建成了.MP3文件&#xff0c;但是文件的内容确实以下的报错…

监控室,屏幕显示不支持码流

1号屏&#xff0c;出现不支持码流 如下原因 老是录像机 无法关闭自动添加摄像头功能&#xff0c; 其他杂牌摄像头 会自动还ip 最终导致 ip冲突 更换ip 可以解决

openstack删除实例卡死在正在删除中

删除实例 问题描述解决办法 实验环境&#xff1b;服务器&#xff0c;openstackY版 问题描述 openstack在删除实例时一直显示正在删除中 解决办法 进入数据库修改实例状态&#xff0c;修改为错误&#xff0c;然后重新删除 首先查看对应实例id 进入数据库修改 rootcompute:~…

数据库原理(关系型数据库基本理论)——(

一、关系的概念 1.关系的定义 &#xff08;1&#xff09;域 域是一组具有相同数据类型的值的集合&#xff0c;可以理解为int[]&#xff08;int类型的数组&#xff09;是一个域。 &#xff08;2&#xff09;笛卡儿积 简单来说&#xff0c;若干个域的笛卡儿积就是将这几个域的…

算法与数据结构--决策树算法

欢迎来到 Papicatch的博客 文章目录 &#x1f349;决策树算法介绍 &#x1f348;原理 &#x1f348;核心思想包括 &#x1f34d;递归分割 &#x1f34d;选择标准 &#x1f34d;剪枝 &#x1f348;解题过程 &#x1f34d;数据准备 &#x1f34d;选择最佳分割特征 &…