【JavaGuide面试总结】Java集合篇·下

news2024/12/29 1:32:30

【JavaGuide面试总结】Java集合篇·下

  • 1.HashMap 的长度为什么是 2 的幂次方
  • 2.HashMap 有哪几种常见的遍历方式?
  • 3.HashSet 如何检查重复?
  • 4.ConcurrentHashMap 和 Hashtable 的区别
  • 5.ConcurrentHashMap 线程安全的具体实现方式/底层具体实现
    • JDK1.8 之前
    • JDK1.8 之后
  • 6.JDK 1.7 和 JDK 1.8 的 ConcurrentHashMap 实现有什么不同?

1.HashMap 的长度为什么是 2 的幂次方

  1. 加快哈希计算

我们都知道为了找到 KEY 的位置在哈希表的哪个槽里面,需要计算 hash(KEY) % 数组长度

但是 % 计算比 & 慢很多,采用二进制位操作 &,相对于 % 能够提高运算效率

重点来了:

取余(%)操作中如果除数是 2 的幂次则等价于与其除数减一的与(&)操作(也就是说 hash%length==hash&(length-1)的前提是 length 是 2 的 n 次方;)

  1. 减少冲突

length 取 2 的整数次幂,是为了使不同 hash 值发生碰撞的概率较小,这样就能使元素在哈希表中均匀地散列(2的整数次幂对于每一位的更改都会影响散列的结果)


2.HashMap 有哪几种常见的遍历方式?

第一式:取出所有的key,通过key取出对应的value

// 取出所有的key,通过key取出对应的value
Set keySet = map.keySet();
for (Object o : keySet) {
    System.out.println(o);
    System.out.println(map.get(o));
}

第二式:把所有的value值取出

// 把所有的value值取出
Collection values = map.values();
for (Object value : values) {
    System.out.println(value);
}

第三式:通过EntrySet来获取 k-v

// 通过EntrySet来获取 k-v
Set entrySet1 = map.entrySet();
for (Object o : entrySet1) {
    // 将entry 转成 Map.Entry
    Map.Entry m = (Map.Entry) o;
    System.out.println(m.getKey());
    System.out.println(m.getValue());
}

3.HashSet 如何检查重复?

当你把对象加入HashSet时,HashSet 会先计算对象的hashcode值来判断对象加入的位置,同时也会与其他加入的对象的 hashcode 值作比较,如果没有相符的 hashcodeHashSet 会假设对象没有重复出现。但是如果发现有相同 hashcode 值的对象,这时会调用equals()方法来检查 hashcode 相等的对象是否真的相同。如果两者相同,HashSet 就不会让加入操作成功。

在 JDK1.8 中,HashSetadd()方法只是简单的调用了HashMapput()方法,并且判断了一下返回值以确保是否有重复元素。

// 返回值:当 set 中没有包含 add 的元素时返回真
public boolean add(E e) {
        return map.put(e, PRESENT)==null;
}

也就是说,在 JDK1.8 中,实际上无论HashSet中是否已经存在了某元素,HashSet都会直接插入,只是会在add()方法的返回值处告诉我们插入前是否存在相同元素。


4.ConcurrentHashMap 和 Hashtable 的区别

ConcurrentHashMapHashtable 的区别主要体现在实现线程安全的方式上不同。

底层数据结构: JDK1.7 的 ConcurrentHashMap 底层采用 分段的数组+链表 实现,JDK1.8 采用的数据结构跟 HashMap1.8 的结构一样,数组+链表/红黑二叉树。Hashtable 和 JDK1.8 之前的 HashMap 的底层数据结构类似都是采用 数组+链表 的形式,数组是 HashMap 的主体,链表则是主要为了解决哈希冲突而存在的

实现线程安全的方式(重要):

  • 在 JDK1.7 的时候,ConcurrentHashMap 对整个桶数组进行了分割分段(Segment,分段锁),每一把锁只锁容器其中一部分数据(下面有示意图),多线程访问容器里不同数据段的数据,就不会存在锁竞争,提高并发访问率。
  • 到了 JDK1.8 的时候,ConcurrentHashMap 已经摒弃了 Segment 的概念,而是直接用 Node 数组+链表+红黑树的数据结构来实现,并发控制使用 synchronized 和 CAS 来操作。

CAS(Compare-and-Swap),即比较并替换,是一种实现并发算法时常用到的技术,Java并发包中的很多类都使用了CAS技术🐲

  • Hashtable(同一把锁) :使用 synchronized 来保证线程安全,效率非常低下。当一个线程访问同步方法时,其他线程也访问同步方法,可能会进入阻塞或轮询状态,如使用 put 添加元素,另一个线程不能使用 put 添加元素,也不能使用 get,竞争会越来越激烈效率越低。

下面,我们再来看看两者底层数据结构的对比图。

Hashtable :

Hashtable 的内部结构

JDK1.7 的 ConcurrentHashMap

Java7 ConcurrentHashMap 存储结构

ConcurrentHashMap 是由 Segment 数组结构和 HashEntry 数组结构组成。

Segment 数组中的每个元素包含一个 HashEntry 数组,每个 HashEntry 数组属于链表结构。

JDK1.8 的 ConcurrentHashMap

Java8 ConcurrentHashMap 存储结构

JDK1.8 的 ConcurrentHashMap 不再是 Segment 数组 + HashEntry 数组 + 链表,而是 Node 数组 + 链表 / 红黑树。不过,Node 只能用于链表的情况,红黑树的情况需要使用 TreeNode。当冲突链表达到一定长度时,链表会转换成红黑树。

TreeNode是存储红黑树节点,被TreeBin包装。TreeBin通过root属性维护红黑树的根结点,因为红黑树在旋转的时候,根结点可能会被它原来的子节点替换掉,在这个时间点,如果有其他线程要写这棵红黑树就会发生线程不安全问题,所以在 ConcurrentHashMapTreeBin通过waiter属性维护当前使用这棵红黑树的线程,来防止其他线程的进入。

static final class TreeBin<K,V> extends Node<K,V> {
        TreeNode<K,V> root;
        volatile TreeNode<K,V> first;
        volatile Thread waiter;
        volatile int lockState;
        // values for lockState
        static final int WRITER = 1; // set while holding write lock
        static final int WAITER = 2; // set when waiting for write lock
        static final int READER = 4; // increment value for setting read lock
...
}

5.ConcurrentHashMap 线程安全的具体实现方式/底层具体实现

JDK1.8 之前

Java7 ConcurrentHashMap 存储结构

首先将数据分为一段一段(这个“段”就是 Segment)的存储,然后给每一段数据配一把锁,当一个线程占用锁访问其中一个段数据时,其他段的数据也能被其他线程访问。

ConcurrentHashMap 是由 Segment 数组结构和 HashEntry 数组结构组成

一个 ConcurrentHashMap 里包含一个 Segment 数组,Segment 的个数一旦初始化就不能改变Segment 数组的大小默认是 16,也就是说默认可以同时支持 16 个线程并发写。

Segment 的结构和 HashMap 类似,是一种数组和链表结构,一个 Segment 包含一个 HashEntry 数组,每个 HashEntry 是一个链表结构的元素,每个 Segment 守护着一个 HashEntry 数组里的元素,当对 HashEntry 数组的数据进行修改时,必须首先获得对应的 Segment 的锁。也就是说,对同一 Segment 的并发写入会被阻塞,不同 Segment 的写入是可以并发执行的。

JDK1.8 之后

Java8 ConcurrentHashMap 存储结构

ConcurrentHashMap 取消了 Segment 分段锁,采用 Node + CAS + synchronized 来保证并发安全。数据结构跟 HashMap 1.8 的结构类似,数组+链表/红黑二叉树。Java 8 在链表长度超过一定阈值(8)时将链表(寻址时间复杂度为 O(N))转换为红黑树(寻址时间复杂度为 O(log(N)))。

Java 8 中,锁粒度更细,synchronized 只锁定当前链表或红黑二叉树的首节点,这样只要 hash 不冲突,就不会产生并发,就不会影响其他 Node 的读写,效率大幅提升。


6.JDK 1.7 和 JDK 1.8 的 ConcurrentHashMap 实现有什么不同?

  • 线程安全实现方式 :JDK 1.7 采用 Segment 分段锁来保证安全, Segment 是继承自 ReentrantLock。JDK1.8 放弃了 Segment 分段锁的设计,采用 Node + CAS + synchronized 保证线程安全,锁粒度更细,synchronized 只锁定当前链表或红黑二叉树的首节点。
  • Hash 碰撞解决方法 : JDK 1.7 采用拉链法,JDK1.8 采用拉链法结合红黑树(链表长度超过一定阈值时,将链表转换为红黑树)。
  • 并发度 :JDK 1.7 最大并发度是 Segment 的个数,默认是 16。JDK 1.8 最大并发度是 Node 数组的大小,并发度更大。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/182929.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

从零编写linux0.11 - 第九章 文件系统(一)

从零编写linux0.11 - 第九章 文件系统&#xff08;一&#xff09; 编程环境&#xff1a;Ubuntu 20.04、gcc-9.4.0 代码仓库&#xff1a;https://gitee.com/AprilSloan/linux0.11-project linux0.11源码下载&#xff08;不能直接编译&#xff0c;需进行修改&#xff09; 本章…

【青训营】Go的一些性能优化技巧

一、Slice切片的性能优化 对Slice进行内存预分配 尽可能在使用make()初始化函数的时候提供容量信息&#xff0c;因为切片本质是一个数组片段的描述&#xff0c;其源码如下&#xff1a; type slice struct{array unsafe.Pointerlen int// 长度cap int// 容量 }如果没有指定容…

22.1.28打卡 Codeforces Round #847 (Div. 3) A~E

https://codeforces.com/contest/1790A. Polycarp and the Day of Pi题意问你第一个和"314159265358979323846264338327"不同的字符串下标1是什么如果全部相同输出最后一个下标1/* ⣿⣿⣿⣿⣿⣿⡷⣯⢿⣿⣷⣻⢯⣿⡽⣻⢿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣇⠸⣿⣿⣆…

Python基于LSTM预测特斯拉股票

Python基于LSTM预测特斯拉股票 提示&#xff1a;前言 Python基于LSTM预测特斯拉股票 股票预测是指&#xff1a;对股市具有深刻了解的证券分析人员根据股票行情的发展进行的对未来股市发展方向以及涨跌程度的预测行为。这种预测行为只是基于假定的因素为既定的前提条件为基础的…

通用智能基础模型假说

🍿*★,*:.☆欢迎您/$:*.★* 🍿 https://dongfangyou.blog.csdn.net/article/details/128761358 通过上面说的 人本身自带一个 各种行为反馈的评价模型 拥有这个模型便可拥有通用智能 简单的分析一下该模型到底应该由什么组成 最基础的模型是什么 首先人类最基础的模型应该…

【小程序】类taro语法中小程序端使用f2

前言 最近在类taro框架中小程序端使用最新版f2。&#xff08;这里我使用rax&#xff09;并封装了库&#xff0c;特此记录一下。 使用 想直接用的同学直接在你的rax项目中安装rax-my-f2这个包&#xff0c;他依赖antv/f2与antv/f2-context这2个包。 import { MyCanvas } from…

Kubernetes 笔记(06)— 搭建多节点集群、kubeadm 安装 master/worker/console/flannel 网络插件

1. kubeadm 官网&#xff1a;https://kubernetes.io/zh-cn/docs/reference/setup-tools/kubeadm/ 为了简化 Kubernetes 的部署工作&#xff0c;社区里就出现了一个专门用来在集群中安装 Kubernetes 的工具&#xff0c;名字就叫 kubeadm&#xff0c;意思就是 Kubernetes 管理员…

Java设计模式-状态模式State

介绍 状态模式&#xff08;State Pattern&#xff09;&#xff1a;它主要用来解决对象在多种状态转换时&#xff0c;需要对外输出不同的行为的问题。状态和行为是一一对应的&#xff0c;状态之间可以相互转换。当一个对象的内在状态改变时&#xff0c;允许改变其行为&#xff…

学习记录677@项目管理之配置管理案例

案例 Simple公司的质量管理体系中的配置管理程序文件中有如下规定: (1)由变更控制委员会(CCB)制定项目的配置管理计划; (2)由配置管理员(CMO)创建配置管理环境: (3)由CCB 审核变更计划; (4)项目中配置基线的变更经过变更申请、变更评估、变更实施后便可发布&#xff1b; (5)CC…

Java基础10:常用API(下)

Java基础10&#xff1a;常用API&#xff08;下&#xff09;一、Date二、SimpleDateFormat三、Calendar四、ZoneId五、Instant六、ZoneDateTime七、DateTimeFormatter八、LocalDate、LocalTime、LocalDateTime九、Duration、Period、ChronoUnit十、包装类一、Date Date类是一个…

基于PIL和Tesseract的数字计算验证码识别处理思路

如图,我们在使用python自动化的时候经常会遇到很多各式各样的验证码。这个是一个数字加法的验证码。 干扰项里包含完整的数字、字母信息,普通的OCR识别可能不是很准确。 但是不管怎们样,咱们先把必要的环境搭建起来,试一下Tesseract的识别结果吧。 1、安装Tesseract: 首…

屏蔽360阻止运程执行变更注册表自启动数据的办法

屏蔽360阻止运程执行变更注册表自启动数据的办法 运程服务器上的程序&#xff0c;由于需要。我在服务器中&#xff0c;加入更新升级自身&#xff08;exe&#xff09;文件&#xff0c;并变更操作系统自启动数据的代码。 实践证明&#xff0c;通过客户端&#xff0c;调用运程服务…

全景解析SSD IO QoS性能优化

一、NAND基本原理目前NAND已经从SLC发展到PLC&#xff0c;但是PLC离大规模上市还有一段距离&#xff0c;我们暂时先略过。市面上主要流通的就是4种NAND类型&#xff1a;SLC、MLC、TLC、QLC。随着每个寿命从高到低依次是SLC>MLC>TLC>QLC.随着单个cell含有的bit数越多&a…

Unity MRTK使用详解(Htc vive+LeapMotion)

MRTK-Unity是一个由Microsoft驱动的开源项目&#xff0c;提供了多种组件和功能&#xff0c;用于加速Unity中的跨平台MR应用程序开发。以下是其一些功能&#xff1a; 提供跨平台输入系统和用于空间交互和UI组件。 启用快速原型通过在编辑器中的模拟&#xff0c;让你马上看到变化…

创建大量TCP连接时会受到什么因素的限制?

1.文件描述符资源 用户级限制 我们可以使用ulimit命令查看系统允许当前用户进程打开的文件数限制&#xff1a; ulimit -n 我们可以使用 ulimit -n 文件数 来修改不过这种设置是临时的&#xff0c;只在当前的session中有效。为永久修改用户级文件描述符数限制&#xff0c;可以…

SpringBoot框架介绍及使用

1. 概述 1.1 SpringBoot 简介 简化Spring应用开发的一个框架&#xff1b; 整个Spring技术栈的一个大整合&#xff1b; J2EE开发的一站式解决方案&#xff1b; 1.2 微服务 微服务&#xff1a;架构风格&#xff08;服务微化&#xff09; 一个应用应该是一组小型服务&#xff1b;…

【速记】离散分布的实现算法

离散分布与 zipf 分布 下面的一段代码&#xff0c;能根据数值描述来生成对应概率的离散值&#xff1a; #include <iostream> #include <iomanip> #include <map> #include <random>using namespace std;int main() {std::random_device rd;std::mt19…

「计算机组成原理」计算机系统概述

文章目录一、计算机发展历程1.1 什么是计算机系统1.2 硬件的发展1.2.1 硬件发展1.2.2 摩尔定律1.3 软件的发展1.4 目前的发展趋势二、计算机系统的多级层次结构2.1 编程语言的三个等级2.2 计算机系统层次结构三、计算机硬件的基本组成3.1 冯诺依曼结构3.2 现代计算机结构四、计…

Codeforces Round #847 (Div. 3) 的 C. Premutation(找规律题)

题面&#xff1a;中文大意&#xff1a;如果一个n个数字的序列恰好包含了1到n的所有整数&#xff0c;那么这个序列就被称为置换。例如&#xff0c;序列[3&#xff0c;1&#xff0c;4&#xff0c;2]。1]和[2&#xff0c;1]是互换&#xff0c;但是[1&#xff0c;2&#xff0c;1]&a…

Java设计模式-备忘录模式Memento

介绍 备忘录模式&#xff08;Memento Pattern&#xff09;在不破坏封装性的前提下&#xff0c;捕获一个对象的内部状态&#xff0c;并在该对象之外保存这个状态。这样以后就可将该对象恢复到原先保存的状态。可以这里理解备忘录模式&#xff1a;现实生活中的备忘录是用来记录某…