目录
红黑树介绍
红黑树实现
节点的插入
完整代码
红黑树介绍
红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或Black。
通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路径会比其他路径长出俩倍,因而是接近平衡的。
最长路径不超过最短路径的二倍
红黑树的性质:
1. 每个结点不是红色就是黑色
2. 根节点是黑色的
3. 如果一个节点是红色的,则它的两个孩子结点是黑色的(树中没有连续的红色节点)
4. 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均包含相同数目的黑色结点。(每条路径的黑色节点数量相等)
5. 每个叶子结点都是黑色的(此处的叶子结点指的是空结点
红黑树实现
节点的插入
当有新节点要插入时,我们尽量遵守规则4,因此插入新节点时,我们插入红色节点。
情况一: cur为红,p为红,g为黑,u存在且为红
abcde是符合红黑树的子树。
如果u存在且为红,p和u变黑,g变红,继续往上处理或者g变黑
新增可以在ab的任意孩子位置
情况二: cur为红,p为红,g为黑,u不存在/u存在且为黑。
p为g的左孩子,cur为p的左孩子,则进行右单旋转;相反,
p为g的右孩子,cur为p的右孩子,则进行左单旋转
p、g变色--p变黑,g变红情况三: cur为红,p为红,g为黑,u不存在/u存在且为黑。
p为g的左孩子,cur为p的右孩子,则针对p做左单旋转;相反,
p为g的右孩子,cur为p的左孩子,则针对p做右单旋转
则转换成了情况2
完整代码
#include<iostream> #include <map> #include <string> #include <algorithm> using namespace std; #include<time.h> #include <assert.h> enum Colour { RED, BLACK }; template<class K, class V> struct RBTreeNode { RBTreeNode<K, V>* _left; RBTreeNode<K, V>* _right; RBTreeNode<K, V>* _parent; pair<K, V> _kv; Colour _col; RBTreeNode(const pair<K, V>& kv) :_left(nullptr) , _right(nullptr) , _parent(nullptr) , _kv(kv) {} }; template<class K, class V> struct RBTree { typedef RBTreeNode<K, V> Node; public: bool Insert(const pair<K, V>& kv) { if (_root == nullptr) { _root = new Node(kv); _root->_col = BLACK; return true; } Node* parent = nullptr; Node* cur = _root; while (cur) { if (cur->_kv.first < kv.first) { parent = cur; cur = cur->_right; } else if (cur->_kv.first > kv.first) { parent = cur; cur = cur->_left; } else { return false; } } cur = new Node(kv); cur->_col = RED; if (parent->_kv.first < kv.first) { parent->_right = cur; } else { parent->_left = cur; } cur->_parent = parent; while (parent && parent->_col == RED) { Node* grandfater = parent->_parent; assert(grandfater); assert(grandfater->_col == BLACK); // 关键看叔叔 if (parent == grandfater->_left) { Node* uncle = grandfater->_right; // 情况一 : uncle存在且为红,变色+继续往上处理 if (uncle && uncle->_col == RED) { parent->_col = uncle->_col = BLACK; grandfater->_col = RED; // 继续往上处理 cur = grandfater; parent = cur->_parent; }// 情况二+三:uncle不存在 + 存在且为黑 else { // 情况二:右单旋+变色 // g // p u // c if (cur == parent->_left) { RotateR(grandfater); parent->_col = BLACK; grandfater->_col = RED; } else { // 情况三:左右单旋+变色 // g // p u // c RotateL(parent); RotateR(grandfater); cur->_col = BLACK; grandfater->_col = RED; } break; } } else // (parent == grandfater->_right) { Node* uncle = grandfater->_left; // 情况一 if (uncle && uncle->_col == RED) { parent->_col = uncle->_col = BLACK; grandfater->_col = RED; // 继续往上处理 cur = grandfater; parent = cur->_parent; } else { // 情况二:左单旋+变色 // g // u p // c if (cur == parent->_right) { RotateL(grandfater); parent->_col = BLACK; grandfater->_col = RED; } else { // 情况三:右左单旋+变色 // g // u p // c RotateR(parent); RotateL(grandfater); cur->_col = BLACK; grandfater->_col = RED; } break; } } } _root->_col = BLACK; return true; } void InOrder() { _InOrder(_root); cout << endl; } bool IsBalance() { if (_root == nullptr) { return true; } if (_root->_col == RED) { cout << "根节点不是黑色" << endl; return false; } // 黑色节点数量基准值 int benchmark = 0; /*Node* cur = _root; while (cur) { if (cur->_col == BLACK) ++benchmark; cur = cur->_left; }*/ return PrevCheck(_root, 0, benchmark); } private: bool PrevCheck(Node* root, int blackNum, int& benchmark) { if (root == nullptr) { //cout << blackNum << endl; //return; if (benchmark == 0)//黑色节点数量的基准值 { benchmark = blackNum; return true; } if (blackNum != benchmark) { cout << "某条黑色节点的数量不相等" << endl; return false; } else { return true; } } if (root->_col == BLACK) { ++blackNum; } if (root->_col == RED && root->_parent->_col == RED)//如果有连续红色节点,则不是红黑树 { cout << "存在连续的红色节点" << endl; return false; } return PrevCheck(root->_left, blackNum, benchmark) && PrevCheck(root->_right, blackNum, benchmark); } void _InOrder(Node* root) { if (root == nullptr) { return; } _InOrder(root->_left); cout << root->_kv.first << ":" << root->_kv.second << endl; _InOrder(root->_right); } void RotateL(Node* parent) { Node* subR = parent->_right; Node* subRL = subR->_left; parent->_right = subRL; if (subRL) subRL->_parent = parent; Node* ppNode = parent->_parent; subR->_left = parent; parent->_parent = subR; if (_root == parent) { _root = subR; subR->_parent = nullptr; } else { if (ppNode->_left == parent) { ppNode->_left = subR; } else { ppNode->_right = subR; } subR->_parent = ppNode; } } void RotateR(Node* parent) { Node* subL = parent->_left; Node* subLR = subL->_right; parent->_left = subLR; if (subLR) { subLR->_parent = parent; } Node* ppNode = parent->_parent; subL->_right = parent; parent->_parent = subL; if (_root == parent) { _root = subL; subL->_parent = nullptr; } else { if (ppNode->_left == parent) { ppNode->_left = subL; } else { ppNode->_right = subL; } subL->_parent = ppNode; } } private: Node* _root = nullptr; }; void TestRBTree1() { size_t N = 1000; srand(time(0)); RBTree<int, int> t1; for (size_t i = 0; i < N; ++i) { int x = rand(); cout << "Insert:" << x << ":" << i << endl; t1.Insert(make_pair(x, i)); } cout << "IsBalance:" << t1.IsBalance() << endl; } int main() { TestRBTree1(); return 0; }