第1章 Hive入门
1.1 什么是Hive
1)Hive简介
Hive是由Facebook开源,基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张表,并提供类SQL查询功能。
2)Hive本质
Hive是一个Hadoop客户端,用于将HQL(Hive SQL)转化成MapReduce程序。
(1)Hive中每张表的数据存储在HDFS
(2)Hive分析数据底层的实现是MapReduce(也可配置为Spark或者Tez)
(3)执行程序运行在Yarn上
1.2 Hive架构原理
CLI(command-line interface)、JDBC/ODBC。
说明:JDBC和ODBC的区别。
(1)JDBC的移植性比ODBC好;(通常情况下,安装完ODBC驱动程序之后,还需要经过确定的配置才能够应用。而不相同的配置在不相同数据库服务器之间不能够通用。所以,安装一次就需要再配置一次。JDBC只需要选取适当的JDBC数据库驱动程序,就不需要额外的配置。在安装过程中,JDBC数据库驱动程序会自己完成有关的配置。)
(2)两者使用的语言不同,JDBC在Java编程时使用,ODBC一般在C/C++编程时使用。
2)元数据:Metastore
元数据包括:数据库(默认是default)、表名、表的拥有者、列/分区字段、表的类型(是否是外部表)、表的数据所在目录等。
默认存储在自带的derby数据库中,由于derby数据库只支持单客户端访问,生产环境中为了多人开发,推荐使用MySQL存储Metastore。
3)驱动器:Driver
(1)解析器(SQLParser):将SQL字符串转换成抽象语法树(AST)
(2)语义分析(Semantic Analyzer):将AST进一步划分为QeuryBlock
(3)逻辑计划生成器(Logical Plan Gen):将语法树生成逻辑计划
(4)逻辑优化器(Logical Optimizer):对逻辑计划进行优化
(5)物理计划生成器(Physical Plan Gen):根据优化后的逻辑计划生成物理计划
(6)物理优化器(Physical Optimizer):对物理计划进行优化
(7)执行器(Execution):执行该计划,得到查询结果并返回给客户端
4)Hadoop
使用HDFS进行存储,可以选择MapReduce/Tez/Spark进行计算。
第2章 Hive安装
2.1 Hive安装地址
1)Hive官网地址
http://hive.apache.org/
2)文档查看地址
https://cwiki.apache.org/confluence/display/Hive/GettingStarted
3)下载地址
http://archive.apache.org/dist/hive/
4)github地址
GitHub - apache/hive: Apache Hive
2.2 Hive安装部署
2.2.1 安装Hive
#修改名字
cd /opt/module
mv apache-hive-3.1.3-bin/ hive
添加环境变量
sudo vim /etc/profile.d/my_env.sh
#HIVE_HOME
export HIVE_HOME=/opt/module/hive
export PATH=$PATH:$HIVE_HOME/bin
source /etc/profile.d/my_env.sh