NLP入门——数据预处理:子词切分及应用

news2024/11/24 13:54:20

BPE(Byte-Pair Encoding)算法

【西湖大学 张岳老师|自然语言处理在线课程 第十六章 - 4节】BPE(Byte-Pair Encoding)编码

如果有一个字符串aabaadaab,对其执行BPE算法
因为字符对aa出现频率最高,因此将其替换为码Z,这时原字符串变为ZbZdZb
此时字符对Zb出现频率最高,将其替换为码Y,此时原字符串变为YZdY
此时字符串中所有字符对频率都一样,都是一次。

在这里插入图片描述
利用BPE算法做子词切分需要两个步骤:

  1. 利用一个大的corpus建立一个子词表(subword vocabulary)以及字节对(token pairs)。
  2. 利用这个子词表和字节对来对新的语料进行子词切分。

首先是第一个任务:
在这里插入图片描述
这里首先子词表中应该包含所有的单个字符,随后我们在corpus中寻找出现频率最高的subword pair,这里是st出现了3+4+1=8次。
在这里插入图片描述
将s,t这个subword pair计入token pair表格中,并将他们组合后添加到子词表中,再次寻找出现频率最高的子词对。
在这里插入图片描述
同上,e,st为出现频率最高的subword pair,继续添加出现频率最高的子词对。
在这里插入图片描述
在添加过be这个子词对后,剩下在corpus的子词对中的子词频率都是一次,因此结束运算。

我们将subword pair表按照频率降序排序,随后对新词按照表格中频率由高到低进行分词。
如果我们对best这个词进行子词切分:

  1. 首先得到b,e,s,t四个子词,接着在token pair表格中进行匹配,发现s,t的子词对组合频率最高,因此将其合并。
  2. 得到了b,e,st这三个子词,我们继续在token pair进行匹配,发现e,st的子词对组合频率最高,因此将其合并。
  3. 得到了b,est这两个子词,随后token pair中没有可以匹配的对象,切分完成。

为了能够还原子词,我们在b后加两个@@,因此best被切分为b@@ + est这两个子词。每当我们还原时,遇到一个以@@结尾的子词,我们将其与后面的子词合并,并去掉@@符号,最终子词序列中没有@@符号为止,即还原了原词序列。

利用subword-nmt实现bpe算法

github subword-nmt
使用pip进行安装:pip install subword-nmt

:~/nlp/token$ subword-nmt learn-bpe -s 32000 < en.tc > en.cds &
:~/nlp/token$ subword-nmt learn-bpe -s 32000 < zh.tok > zh.cds &

-s后是学习的词数量,en.tc、zh.tok分别为上一节处理后的英文、中文文本,en.cds、zh.cds是输出文件。
查看学习到的zh.cds文件:
在这里插入图片描述之后我们可以用apply-bpe利用规则文件对corpus进行切分:

:~/nlp/token$ subword-nmt apply-bpe -c zh.cds < zh.tok > zh.bpe

运行后我们查看zh.bpe文件:
在这里插入图片描述
我们可以看到3377被拆成了33@,77以及横行被拆成了横@行,我们统计拆分前后的词表中词的数量:

#vcb.py
#encoding: utf-8

import sys

def count(srcf):
    vcb={}#创建一个空字典
    with open(srcf,"rb") as frd:
        for line in frd:
            tmp = line.strip()
            if tmp:
                for word in tmp.decode("utf-8").split():#利用split()将每行的词提取出来
                    vcb[word] = vcb.get(word,0) + 1#字典的get方法,如果vcb[word]存在就取值,若不存在返回0
                    #统计每个子词出现的频次
    return vcb              

if __name__=="__main__":
    print(len(count(*sys.argv[1:])))#len为出现的不同子词的个数

在命令行输入:

:~/nlp/token$ python vcb.py zh.bpe 
43050
:~/nlp/token$ python vcb.py zh.tok 
630306

可以看到执行bpe算法后,词表大小被大大减少。

进一步缩减bpe算法产生的词表

在zh.bpe文件中,会有很多低频的、只出现一次或两次的词,例如 “非洲统一组织“ ,若拆成 “非洲”、“统一”、“组织”,则这三个词每个词的频率都会高于拆之前的词。
因此我们需要统计每个子词的频率来决定阈值:

:~/nlp/token$ subword-nmt get-vocab < zh.bpe > zh.vcb
:~/nlp/token$ tail zh.vcb 
不伦@@ 1
® 11
ƒ 1
布拉柴@@ 1
別@@ 11111

查看文件的尾部,发现很多子词的频率为1,只出现过一次。

:~/nlp/token$ subword-nmt apply-bpe -c zh.cds --vocabulary zh.vcb --vocabulary-threshold 8 < zh.tok > zh.bpe

对词表设置阈值为8后,重新得到新的bpe算法处理后的文件,再次统计词表的长度:

:~/nlp/token$ python vcb.py zh.bpe 
42590

可以看到,由于词频低于8的词都被过滤掉,词表被进一步缩减。

unigram算法

利用sentencepiece运行unigram算法

sentencepiece安装:pip install sentencepiece github-sentencepiece
unigram算法总结-huggingface
unigram算法原文
在终端输入以下命令:

:~/nlp/normalize$ spm_train --input=uni.zh --model_prefix=unizh --vocab_size=32000 ---character_coverage --model_type=unigram --input_sentence_size=1048576 --shuffle_input_sentence --train_extremely_large_corpus

在这里插入图片描述
如图所示的参数说明:
--input:输入数据是原始的语料文件,因此我们选择最初的uni.zh未经过处理的文件。
--model_prefix:输出训练后模型文件的前缀名,后缀为.model
--vocab_size:输入模型训练的词数
--character_coverage:我们选用的是联合国的中文语料,推荐中文日文等丰富字(母)语言设置为0.9995,其他设置为1。代表字母的覆盖率,默认为0.9995。
--model_type:指定训练模型的类型,我们欲使用sentencepiece完成unigram算法,因此参数设置为默认(unigram)。
另外,我们添加了其他的帮助提升训练效果的参数:
--input_sentence_size:限制了训练数据中加载的最大句长
--shuffle_input_sentence:将输入每行句子先做乱序处理,再输入训练模型
--train_extremely_large_corpus:针对输入是很大的语料规模做优化,默认为false,但只要在命令行出现就自动设置为true,未出现则为默认值false。

运行完成后,我们查看unizh.vocab文件,存储的是所有的子词以及他们出现概率的负对数:
在这里插入图片描述

我们利用训练完成的model进行子词切分,在命令行输入:

 :~/nlp/normalize$ spm_encode --model=unizh.model  < uni.zh > zh.spm

传入最初原始的raw text,利用训练好的模型得到分词后的文件,查看zh.spm文件:
在这里插入图片描述
这是对原始语料进行处理后的分词文件,可以看到分词后的结果。利用spm_decode可以还原原始数据:

:~/nlp/normalize$ spm_decode --model=unizh.model < zh.spm > zh.despm

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1817492.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

开源-Docker部署Cook菜谱工具

开源-Docker部署Cook菜谱工具 文章目录 开源-Docker部署Cook菜谱工具介绍资源列表基础环境一、安装Docker二、配置加速器三、查看Docker版本四、拉取cook镜像五、部署cook菜谱工具5.1、创建cook容器5.2、查看容器运行状态5.3、查看cook容器日志 六、访问cook菜谱服务6.1、访问c…

Web端在线Stomp服务测试与WebSocket服务测试

Stomp服务测试 支持连接、发送、订阅、接收&#xff0c;可设置请求头、自动重连 低配置云服务器&#xff0c;首次加载速度较慢&#xff0c;请耐心等候 预览页面&#xff1a;http://www.daelui.com/#/tigerlair/saas/preview/lxbho9lkzvgc 演练页面&#xff1a;http://www.da…

设计模式-创建型-04-建造者模式

1、盖房项目需求 1&#xff09;需要建房子&#xff1a;这一过程为打桩、砌墙、封顶2&#xff09;房子有各种各样的&#xff0c;比如普通房&#xff0c;高楼&#xff0c;别墅&#xff0c;各种房子的过程虽然一样&#xff0c;但是要求不要相同的3&#xff09;请编写程序&#xf…

解决linux jenkins要求JDK版本与项目版本JDK不一致问题

背景–问题描述&#xff1a; 新入职公司&#xff0c;交接人说jenkins运行有问题&#xff0c;现在都是手动发布&#xff0c;具体原因让我自己看&#xff08;笑哭&#xff09;。我人都蒙了&#xff0c;测试环境都手动发布&#xff0c;那不是麻烦的要死&#xff01; 接手后&am…

bfs+枚举,CF666B - World Tour

一、题目 1、题目描述 2、输入输出 2.1输入 2.2输出 3、原题链接 Problem - 666B - Codeforces 二、解题报告 1、思路分析 数据量允许跑N次bfs预处理所有点的最短路&#xff0c;以及预处理到达每个点距离最远的3个点&#xff0c;以及每个点能够到达的最远的3个点 我们枚举…

计算机网络(5) ARP协议

什么是ARP 地址解析协议&#xff0c;即ARP&#xff08;Address Resolution Protocol&#xff09;&#xff0c;是根据IP地址获取物理地址的一个TCP/IP协议。主机发送信息时将包含目标IP地址的ARP请求广播到局域网络上的所有主机&#xff0c;并接收返回消息&#xff0c;以此确定…

边缘网关在智能制造工厂中的创新应用及效果-天拓四方

在数字化浪潮席卷之下&#xff0c;智能制造工厂正面临着前所未有的数据挑战与机遇。边缘网关&#xff0c;作为数据处理与传输的关键节点&#xff0c;在提升工厂运营效率、确保数据安全方面发挥着日益重要的作用。本文将通过一个具体案例&#xff0c;详细阐述边缘网关在智能制造…

华为云DDoS攻击下的应对策略

当华为云上的服务遭遇大规模DDoS攻击导致网络流量异常&#xff0c;触发了华为云的自动防护机制&#xff0c;即所谓的“黑洞”状态时&#xff0c;服务将暂时无法访问&#xff0c;直至攻击停止或流量恢复正常。本文将探讨如何在这一情况下&#xff0c;通过引入第三方安全产品来快…

如何利用智能家居打造一个“会呼吸的家”?一体化电动窗帘

如何利用智能家居打造一个“会呼吸的家”&#xff1f;一体化电动窗帘 史新华 隐藏式一体化智能电动窗帘与市面上其他窗帘不同的是&#xff0c;电机内置于轨道之中&#xff0c;一体化&#xff0c;美观、安静、滑动顺畅。 每次都会自动打开和关闭&#xff0c;相当漂亮。 众多家庭…

【精品方案】大型企业数字化转型管控平台解决方案(55页PPT),干货满满!

引言&#xff1a;随着信息技术的飞速发展&#xff0c;数字化转型已成为大型企业提升竞争力、实现持续创新的必经之路。本解决方案旨在为企业提供一套全面、高效、灵活的数字化转型管控平台&#xff0c;助力企业实现业务流程的数字化重构、数据资产的智能管理以及决策过程的精准…

人工智能--制造业和农业

欢迎来到 Papicatch的博客 文章目录 &#x1f349;人工智能在制造业中的应用 &#x1f348; 应用场景及便利 &#x1f34d;生产线自动化 &#x1f34d;质量控制 &#x1f34d;预测性维护 &#x1f34d;供应链优化 &#x1f348; 技术实现及核心 &#x1f34d;机器学习和…

【吊打面试官系列-Mysql面试题】MySQL 数据库作发布系统的存储,一天五万条以上的增量,预计运维三年,怎么优化?

大家好&#xff0c;我是锋哥。今天分享关于 【MySQL 数据库作发布系统的存储&#xff0c;一天五万条以上的增量&#xff0c;预计运维三年,怎么优化&#xff1f;】面试题&#xff0c;希望对大家有帮助&#xff1b; MySQL 数据库作发布系统的存储&#xff0c;一天五万条以上的增量…

R语言统计分析——图形文本、自定义坐标轴和图例

参考资料&#xff1a;R语言实战【第2版】 我们可以在图形上添加标题&#xff08;main&#xff09;、副标题&#xff08;sub&#xff09;、坐标轴标签&#xff08;xlab、ylab&#xff09;并指定标轴范围&#xff08;xlim、ylim&#xff09;。 # 录入数据 dose<-c(20,30,40,4…

JAVA反编译工具-CFR(class单个反编译、JAR包整体反编译)

环境说明 1、win10 2、JAVA8&#xff08;环境变量要配置好&#xff09; 3、cfr版本&#xff1a;C:\Users(xx)当前用户\cfr-0.152.jar 4、命令行操作路径&#xff1a;C:\Users(xx)当前用户 5、示例反编译jar包&#xff1a;C:\Users(xx)当前用户\ruoyi-admin.jar CFR工具相关参…

HarmonyOs修改应用名称和图标方法

最近在开发Harmony应用&#xff0c;发现修改app.json5下的lable:app_name和icon不生效 后来经过查找&#xff0c;原来还需要更改entry下的src/main/module.json5才行&#xff0c;具体操作路径是&#xff1a; 更改后生效&#xff1a;

LeetCode刷题之HOT100之不同的二叉搜索树

1、题目描述 2、逻辑分析 给定一个有序序列 1⋯n&#xff0c;为了构建出一棵二叉搜索树&#xff0c;我们可以遍历每个数字 i&#xff0c;将该数字作为树根&#xff0c;将 1⋯(i−1) 序列作为左子树&#xff0c;将 (i1)⋯n 序列作为右子树。接着我们可以按照同样的方式递归构建…

读AI未来进行式笔记11丰饶时代与奇点

1. 第四次工业革命 1.1. 在AI轰轰烈烈地拉开第四次工业革命帷幕的同时&#xff0c;一场清洁能源革命也紧锣密鼓地展开 1.1.1. 清洁能源革命好比一场“及时雨”&#xff0c;不但将解决日益加剧的全球气候变化问题&#xff0c;而且会大幅降低全世界的电力成本 1.1.2. 人们将致…

谷歌发布HyperDreameBooth:单张人像20秒内完成模型训练,速度比DreamBooth快25倍,模型小10000倍

HyperDreamBooth是谷歌去年发布的革命性模型训练方法&#xff0c;单张人像20秒内完成模型训练&#xff0c;速度比DreamBooth快25倍&#xff0c;模型小10000倍&#xff0c;但是没有不开源。 今年&#xff0c;论文《HyperDreamBooth: HyperNetworks for Fast Personalization of…

【沟通管理】项目经理《葵花宝典》之跨部门沟通

为什么每次跟其它部门的沟通总是不欢而散&#xff1f; 为什么每次想好好的就事论事的时候&#xff0c;却总是像在吵架&#xff1f; 为什么沟通总是不同频&#xff1f; 这是不是你作为项目经理在跨部门沟通时经常会遇到的问题&#xff1f; 在企业项目管理中&#xff0c;跨部门沟…

32岁TVB「最强关系户」快速上位,嫁巨星家族屡传婚变。

现年32岁的王敏奕贵为总经理曾志伟的新抱,经常被外界以「家嫂」称呼,而王敏奕近年亦凭出色演技获大赞,继在TVB剧集《婚后事》中饰演Mira一角,介入陈自瑶与罗子溢的婚姻,被封为「港版最美小三」之后,早前在剧集《家族荣耀之继承者》中大展「哭功」,获观众激赞! 除了演技…