4.大模型微调技术LoRA

news2024/12/25 9:06:31

大模型低秩适配(LoRA)技术

现有PEFT 方法的局限与挑战

  • Adapter方法,通过增加模型深度而额外增加了模型推理延时。
  • Prompt Tuning、Prefix Tuning、P-Tuning等方法中的提示较难训练,同时缩短了模型可用的序列长度。
  • 往往难以同时实现高效率和高质量,效果通常不及完全微调(full-finetuning)。
  • 简而言之,尽管大模型参数规模巨大,但关键作用通常是由其中的低秩本质维度(lowintrinsic dimension)发挥的。
  • 受此启发,微软提出了低秩适配(LoRA)方法,设计了特定结构,在涉及矩阵乘法的模块中引入两个低秩矩阵A和B以模拟完全微调过程。这相当于只对语言模型中起关键作用的低秩本质维度进行更新。

LoRA: 小模型有大智慧(2021)

请添加图片描述

为了使微调更加高效,LoRA的方法是通过低秩分解将权重更新表示为两个较小的矩阵(称为更新矩阵)。这些新矩阵可以在适应新数据的同时保持整体变化数量较少进行训练。
原始权重矩阵保持冻结状态,并且不再接受任何进一步的调整。最终结果是通过将原始权重和适应后的权重进行组合得到。

请添加图片描述

LoRA 核心技术揭秘

在LoRA方法中,实际上是在原始预训练语言模型(PLM)旁增加一个附加的网络通路,这可以视作一种“外挂”结构。这个外挂结构的目的是通过两个矩阵A和B的相乘来模拟本征秩(intrinsic rank)。

  • 整体设计:(两个小模型)输入和输出的维度均为d,这与预训练模型层的维度相同。
  • 低秩分解:A矩阵会将输入的d维数据降维至r维(增量矩阵的本征秩),r远小于d(r<< d)。矩阵计算从d x d变为d x r + r x d,减少了模型的参数量和计算量。
  • 回映射:B矩阵将这些r维数据再映射回d维,以便与预训练模型的其他部分保持兼

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1807801.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【每日算法】

算法第15天| (二叉树part02)层序遍历、226.翻转二叉树(优先掌握递归)、101. 对称二叉树(优先掌握递归) 文章目录 算法第15天| (二叉树part02)层序遍历、226.翻转二叉树(优先掌握递归)、101. 对称二叉树(优先掌握递归)一、层序遍历二、226. 翻转二叉树(优先掌握递归)三、101. 对…

小程序中实现自定义头部导航组件

在页面中实现自定义头部导航的组件&#xff0c;如果仅是单个页面中需要自定义可在页面的json文件中配置"navigationStyle": “custom”&#xff0c;如果是项目中所有页面都想使用自定义的组件&#xff0c;可在app.json的window中全局配置"navigationStyle"…

2024-6-9

今日安排&#xff1a; 学校的课程作业windows SEH 机制简单入门windows 用户态 pwn / 内核态入门 计网实验报告 && 网安实验报告继续审计 nf_tables 源码&#xff0c;主要看 active 相关逻辑。复现 CVE-2022-32250 这个漏洞【 && iptables 相关学习】♥♥♥♥…

【车载开发系列】MCU选型

【车载开发系列】MCU选型 【车载开发系列】MCU选型 【车载开发系列】MCU选型一. 重要概念二. MCU选型的风险风险1风险2 三. MCU选型要点四. MCU选型维度五. MCU 选型需要考虑的因素1&#xff09;ROM/RAM2&#xff09;速度/主频3&#xff09;分析外设需求4&#xff09;工作电压(…

idea编码问题:需要 <标识符> 非法的类型 、需要为 class、interface 或 enum 问题解决

目录 问题现象 问题解决 问题现象 今天在idea 使用中遇到的一个编码的问题就是&#xff0c;出现了这个&#xff1a; Error:(357, 28) java: /home/luya...........anageService.java:357: 需要 <标识符> Error:(357, 41) java: /home/luya............anageService.ja…

表达式求值的相关语法知识(C语言)

目录 整型提升 整型提升的意义 整型提升规则 整型提升实例 算术转换 赋值转换 操作符的属性 C语言的语法并不能保证表达式的执行路径唯一&#xff01;&#xff01;&#xff01; 问题表达式 整型提升 C的整型算术运算总是至少以缺省整型类型的精度来进行的。为了获得这…

基于SSM+Jsp的家用电器销售网站

开发语言&#xff1a;Java框架&#xff1a;ssm技术&#xff1a;JSPJDK版本&#xff1a;JDK1.8服务器&#xff1a;tomcat7数据库&#xff1a;mysql 5.7&#xff08;一定要5.7版本&#xff09;数据库工具&#xff1a;Navicat11开发软件&#xff1a;eclipse/myeclipse/ideaMaven包…

锂电池寿命预测 | Matlab基于SSA-SVR麻雀优化支持向量回归的锂离子电池剩余寿命预测

目录 预测效果基本介绍程序设计参考资料 预测效果 基本介绍 【锂电池剩余寿命RUL预测案例】 锂电池寿命预测 | Matlab基于SSA-SVR麻雀优化支持向量回归的锂离子电池剩余寿命预测&#xff08;完整源码和数据&#xff09; 1、提取NASA数据集的电池容量&#xff0c;以历史容量作…

LLVM Cpu0 新后端10

想好好熟悉一下llvm开发一个新后端都要干什么&#xff0c;于是参考了老师的系列文章&#xff1a; LLVM 后端实践笔记 代码在这里&#xff08;还没来得及准备&#xff0c;先用网盘暂存一下&#xff09;&#xff1a; 链接: https://pan.baidu.com/s/1yLAtXs9XwtyEzYSlDCSlqw?…

GitLab代码导出 gitlab4j-api 实现

目录 GitLab简介 GitLab 的主要特点包括&#xff1a; GitLab代码导出 gitlab4j-api 添加 gitlab4j-api 依赖 使用 gitlab4j-api 获取特定命名空间下的所有项目 说明 注意事项 GitLab简介 GitLab 是一个开源的代码仓库和协作平台&#xff0c;主要用于版本控制和源代码管理…

无人用过!QRTCN-BiLSTM实现区间预测!区间预测全家桶再更新!

声明&#xff1a;文章是从本人公众号中复制而来&#xff0c;因此&#xff0c;想最新最快了解各类智能优化算法及其改进的朋友&#xff0c;可关注我的公众号&#xff1a;强盛机器学习&#xff0c;不定期会有很多免费代码分享~ 今天对我们之前推出的区间预测全家桶再次进行更新&…

SPSS 27 安装教程(附安装包下载)

SPSS 27 是一款用于统计学分析运算、数据挖掘、预测分析和决策支持任务的软件产品。它最初是为社会科学领域的研究者设计的&#xff0c;但随着其功能和应用的不断扩展&#xff0c;现在已广泛应用于各个领域&#xff0c;如医学、市场调研、教育等。 [安装注意]&#xff1a;安装前…

智能制造 v3.13.11 发布,ERP、在线课堂、表白墙更新

智能制造一体化管理系统 [SpringBoot2 - 快速开发平台]&#xff0c;适用于制造业、建筑业、汽车行业、互联网、教育、政府机关等机构的管理。包含文件在线操作、工作日志、多班次考勤、CRM、ERP 进销存、项目管理、EHR、拖拽式生成问卷、日程、笔记、工作计划、行政办公、薪资模…

UE5基础1-下载安装

目录 一.下载 二.安装 三.安装引擎 四.其他 简介: UE5&#xff08;Unreal Engine 5&#xff09;是一款功能极其强大的游戏引擎。 它具有以下显著特点&#xff1a; 先进的图形技术&#xff1a;能够呈现出令人惊叹的逼真视觉效果&#xff0c;包括高逼真的光影、材…

Robust Tiny Object Detection in Aerial Images amidst Label Noise

文章目录 AbstractIntroductionRelated WorkMethodsClass-aware Label CorrectionUpdateFilteringTrend-guided Learning StrategyTrend-guided Label ReweightingRecurrent Box RegenerationExperimentpaper Abstract 精确检测遥感图像中的小目标非常困难,因为这类目标视觉信…

【C++题解】1389 - 数据分析

问题&#xff1a;1389 - 数据分析 类型&#xff1a;简单循环 题目描述&#xff1a; 该方法的操作方式为&#xff0c;如果要传递 2 个数字信息给友军&#xff0c;会直接传递给友军一个整数 n&#xff08;n 是一个 10 位以内的整数&#xff09;&#xff0c;该整数的长度代表要传…

Ps:自动批量处理照片

有很多种方法可以将调色风格一次性应用到多张照片上。 但对于要进行局部修饰的照片&#xff0c;比如人像照片中要去除皮肤上的瑕疵、柔化皮肤上的光影以及均匀肤色等&#xff0c;想要实现成批处理似乎很困难。 随着人工智能技术的不断发展&#xff0c;越来越多的插件具备自动修…

Linux下文件权限管理

任务要求 1. 在跳板机上为开发部门专门创建一个目录&#xff0c;只允许开发部门所有员工使用该目录 2. 其他人员不能进入和查看该目录里的内容 任务分解 1. 在跳板机给开发部门创建目录 2. 对该目录做好权限的管控工作 只允许开发部门的所有人使用&#xff0c;创建、删除…

Day20:LeedCode 654.最大二叉树 617.合并二叉树 700.二叉搜索树中的搜索 98.验证二叉搜索树

654. 最大二叉树 给定一个不重复的整数数组 nums 。 最大二叉树 可以用下面的算法从 nums 递归地构建: 创建一个根节点&#xff0c;其值为 nums 中的最大值。递归地在最大值 左边 的 子数组前缀上 构建左子树。递归地在最大值 右边 的 子数组后缀上 构建右子树。 返回 nums 构…

机器学习--回归模型和分类模型常用损失函数总结(详细)

文章目录 引言 回归模型常用损失函数均方误差&#xff08;Mean Squared Error, MSE&#xff09;均方根误差&#xff08;Root Mean Squared Error, RMSE&#xff09;平均绝对误差&#xff08;Mean Absolute Error, MAE&#xff09;Huber损失&#xff08;Huber Loss&#xff09; …