【python】OpenCV—Cartoonify and Portray

news2025/1/15 6:42:08

在这里插入图片描述

参考来自

  • 使用Python+OpenCV将照片变成卡通照片

文章目录

  • 1 卡通化
    • code
    • cv2.medianBlur
    • cv2.adaptiveThreshold
    • cv2.kmeans
    • cv2.bilateralFilter
  • 2 肖像画
    • cv2.divide

1 卡通化

code

import cv2
import numpy as np


def edge_mask(img, line_size, blur_value):
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    gray_blur = cv2.medianBlur(gray, blur_value)
    edges = cv2.adaptiveThreshold(gray_blur, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY,
                                  line_size, blur_value,)
    return edges


def color_quantization(img, k):
    # transrorm the image
    data = np.float32(img).reshape((-1, 3))

    # determine criteria
    criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 20, 0.001)

    # implementing k-means
    ret, label, center = cv2.kmeans(data, k, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS)
    center = np.uint8(center)
    result = center[label.flatten()]
    result = result.reshape(img.shape)
    return result


if __name__ == "__main__":
    img = cv2.imread('2.jpg')

    line_size = 3
    blur_value = 3
    edges = edge_mask(img, line_size, blur_value)
    cv2.imwrite("edges.jpg", edges)

    total_color = 3
    img_quan_color = color_quantization(img, total_color)
    cv2.imwrite("img_quan_color.jpg", img_quan_color)

    blurred = cv2.bilateralFilter(img_quan_color, d=3, sigmaColor=200, sigmaSpace=200)
    cartton = cv2.bitwise_and(blurred, blurred, mask=edges)
    cv2.imwrite("cartton.jpg", cartton)

    # cv2.imshow("1", cartton)
    # cv2.waitKey(0)
    # cv2.destroyAllWindows()

输入图片

在这里插入图片描述
边缘
在这里插入图片描述
颜色量化
在这里插入图片描述

边缘和颜色量化合并

在这里插入图片描述


下面消融下一些细节配置

line_size 设置为 3~15

在这里插入图片描述


line_size = 3
blur_value 设置为 3~15
在这里插入图片描述


颜色量化

total_color = 3~15

在这里插入图片描述
在这里插入图片描述
越大颜色越丰富


双边滤波

d=3~15

在这里插入图片描述

cv2.medianBlur

该函数用于对图像进行中值滤波,主要用于消除图像中的椒盐噪声和脉冲噪声。它通过取邻域内所有像素值的中值来替代当前像素点的像素值,能够有效保护图像边缘信息,避免线性滤波器可能带来的图像细节模糊。

1)函数原型

dst = cv2.medianBlur(src, ksize)

2)参数说明

src:需要处理的图像,即源图像。图像可以具有任意数量的通道,这些通道可以独立处理。图像深度应为 CV_8U、CV_16U、CV_16S、CV_32F 或 CV_64F 中的一个。

ksize:滤波核的大小。滤波核大小是指在滤波处理过程中其邻域图像的高度和宽度。核大小必须是比 1 大的奇数,例如 3、5、7 等。

3)返回值

dst:进行中值滤波后得到的处理结果,与源图像 src 的尺寸和类型相同。

4)使用注意事项

在进行滤波时,应注意 ksize 参数的选择。过小的 ksize 可能无法有效去除噪声,而过大的 ksize 则可能导致图像细节损失。

由于中值滤波是非线性的,它可能无法处理一些非线性噪声。

中值滤波对于去除椒盐噪声和脉冲噪声特别有效,但对于其他类型的噪声可能效果有限。

cv2.adaptiveThreshold

该函数用于对图像进行自适应阈值处理,即根据图像的局部区域来计算阈值,并应用这个阈值对图像进行二值化。这种处理方式特别适用于光照不均匀的图像。

1)函数原型

dst = cv2.adaptiveThreshold(src, maxValue, adaptiveMethod, thresholdType, blockSize, C)

2)参数说明

src:输入图像,必须是单通道图像(灰度图像)。

maxValue:阈值化后的最大值。当满足条件时,像素值将被设置为 maxValue,否则为 0。

adaptiveMethod:自适应阈值算法的选择。

  • cv2.ADAPTIVE_THRESH_MEAN_C:使用相邻区域的平均值减去常数 C 作为阈值。
  • cv2.ADAPTIVE_THRESH_GAUSSIAN_C:使用相邻区域的加权和(高斯加权)减去常数 C 作为阈值。

thresholdType:二值化类型。

  • cv2.THRESH_BINARY:大于阈值的像素值设置为 maxValue,小于等于阈值的像素值设置为 0。
  • cv2.THRESH_BINARY_INV:与 cv2.THRESH_BINARY 相反。

blockSize:用于计算阈值的邻域大小(必须是正奇数)。例如,3、5、7 等。

C:从计算出的阈值中减去的常数,通常为正数。

3)返回值

dst:自适应阈值处理后的输出图像,与输入图像 src 的尺寸相同,但类型为二值图像。

4)注意事项

自适应阈值处理可以有效地处理光照不均匀的图像,因为它会根据每个像素的局部邻域来动态计算阈值。

blockSize 参数决定了计算阈值时考虑的邻域大小,可以根据图像的具体情况选择。

C 参数用于调整最终的阈值,可以根据需要进行调整。

cv2.kmeans

该函数用于执行 K-Means 聚类算法,将输入数据划分为 K 个集群,并返回每个数据点的集群标签和集群的质心。

1)函数原型
retval, labels, centers = cv2.kmeans(data, K, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS)

2)参数说明

data:输入数据,通常是 NumPy 数组,其形状为 (N, M),其中 N 是数据点的数量,M 是每个数据点的维数。

K:需要划分的集群数量。

termCriteria:终止条件,通常是一个元组,包含三个参数 (type, maxIter, epsilon)。其中 type 可以是 cv2.TERM_CRITERIA_EPS、cv2.TERM_CRITERIA_MAX_ITER 或它们的组合(使用按位或运算符 | 连接),maxIter 是最大迭代次数,epsilon 是收敛的精度要求。

attempts:算法尝试的次数。算法使用不同的初始标签集进行多次运行,并返回最佳结果。这个参数指定了尝试的次数。

flags:初始化质心的方法。目前唯一可用的标志是 cv2.KMEANS_RANDOM_CENTERS,它使用随机值初始化质心。

centers(可选):用于传递预定义的质心数组。如果不提供,则会根据 flags 参数随机初始化质心。

3)返回值

retval:迭代次数。算法执行的实际迭代次数。

labels:每个数据点的集群标签。形状为 (N,) 的 NumPy 数组,其中 N 是数据点的数量。

centers:集群的质心。形状为 (K, M) 的 NumPy 数组,其中 K 是集群的数量,M 是数据点的维数。

4)使用注意事项

在使用 K-Means 算法时,选择合适的 K 值非常重要。K 值过小可能无法充分描述数据的分布,而 K 值过大可能导致过拟合。

由于 K-Means 算法是随机的,每次运行的结果可能略有不同。为了获得更稳定的结果,可以多次运行算法并取平均结果。

数据的预处理(如缩放、归一化)对 K-Means 算法的性能和结果有重要影响。确保在输入数据之前进行适当的预处理。

cv2.bilateralFilter

该函数使用双边滤波算法对图像进行平滑处理,去除噪声的同时保留边缘信息。

1)函数原型

dst = cv2.bilateralFilter(src, d, sigmaColor, sigmaSpace[, dst[, borderType]])

2)参数说明

src:输入图像,应为8位或浮点型、1通道或3通道图像。

d:滤波时考虑的像素直径(不是半径)。对于较大的值,该滤波器将不会有太大差异,但会增加计算时间。它可以是大于1的整数,但通常建议使用不超过15的值。

sigmaColor:颜色空间的标准差。一个较大的值意味着像素邻域内有较大颜色变化的像素能够影响到滤波器的中心像素。这有助于在平滑图像时保留边缘。

sigmaSpace:坐标空间的标准差(以像素为单位)。如果参数值较大,那么只有在像素坐标空间中距离足够近的像素才会影响中心像素的值。这有助于在平滑图像时保留边缘。

dst(可选):输出图像,与源图像具有相同的尺寸和类型。

borderType(可选):像素外推法,决定如何处理边界像素。默认值为 cv2.BORDER_DEFAULT。

3)返回值

dst:滤波后的图像,与源图像具有相同的尺寸和类型。

4)使用注意事项

d 参数的选择:虽然较大的值可能不会显著改变滤波器的效果,但会增加计算时间。因此,在实际应用中,通常建议使用较小的值(如15或更小)。

sigmaColor 和 sigmaSpace 的选择:这两个参数共同决定了双边滤波器的行为。较大的 sigmaColor 值允许颜色变化较大的像素影响中心像素,而较大的 sigmaSpace 值则限制了仅在空间距离较近的像素才能影响中心像素。根据具体的应用场景,可能需要调整这两个参数的值以达到最佳效果。

边缘保留:与其他线性滤波方法(如高斯滤波)相比,双边滤波能够在平滑图像的同时更好地保留边缘信息。这是因为双边滤波在考虑像素之间的空间距离之外,还考虑了像素之间的灰度值相似性。

2 肖像画

import cv2

import os
# print(os.listdir("../../datasets/human_Wild_public/images/mpii_029329465.jpg"))
img = cv2.imread("C://Users/Administrator/Desktop/1.jpeg")

gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
invert_g_i = 255 - gray_img

blurred_i_g_i = cv2.GaussianBlur(invert_g_i, (19, 19), 0)

invert = 255 - blurred_i_g_i

sketck = cv2.divide(gray_img, invert, scale=256.0)
cv2.imwrite("C://Users/Administrator/Desktop/2.jpeg", sketck)

# cv2.imshow("ori", img)
# cv2.imshow("pencil sketch", sketck)
# cv2.waitKey(0)

原图
请添加图片描述
灰度图
请添加图片描述
反向灰度图
请添加图片描述
求模糊
请添加图片描述
反回来
请添加图片描述
肖像画
请添加图片描述

cv2.divide

执行两个数组(图像)的逐元素相除操作。

1)函数原型

dst = cv2.divide(src1, src2[, dst[, scale[, dtype[, mask]]]])

2)参数说明

src1:第一个输入数组(通常是图像)。

src2:第二个输入数组(通常是图像),其元素将用作除数。

dst(可选):输出数组,与 src1 具有相同的尺寸和通道数。

scale(可选):可选的缩放因子。如果指定了,则结果将乘以这个值。默认值为 1。

dtype(可选):输出数组的可选深度。默认与输入数组的深度相同。

mask(可选):可选的 8 位单通道数组,用于指定哪些元素需要参与计算。

3)返回值

dst:输出数组,包含 src1 数组的元素与 src2 数组的元素相除的结果(如果提供了 scale,则乘以 scale)。

4)使用注意事项

如果 src2 中的任何元素为零,则结果将是未定义的(在浮点数中可能是 NaN 或无穷大)。因此,在使用 cv2.divide 之前,确保 src2 中没有零元素,或者准备处理可能出现的异常情况。

mask 参数允许你选择性地执行逐元素除法,只影响那些 mask 中对应位置为真的元素。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1802817.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

idea2023如何创建普通maven工程项目

解决 1.创建新项目 1.进入创建项目 File -> new -> project 2,project 中有 build system 选择maven 2.在已有项目中创建普通maven工程 1.右键项目选择 new -> Module 2.选择 new Module 其实与新建maven工程没什么区别 em:问题 idea以前的版本是在Mav…

【一百一十】【算法分析与设计】[SDOI2009] HH的项链,树状数组应用,查询区间的种类数,树状数组查询区间种类数

P1972 [SDOI2009] HH的项链 [SDOI2009] HH的项链 题目描述 HH 有一串由各种漂亮的贝壳组成的项链。HH 相信不同的贝壳会带来好运,所以每次散步完后,他都会随意取出一段贝壳,思考它们所表达的含义。HH 不断地收集新的贝壳,因此&am…

第十二届蓝桥杯C++青少年组中/高级组选拔赛2020年11月22日真题解析

一、编程题 第1题&#xff1a;求和 【题目描述】 输入一个正整数 N(N < 100)&#xff0c;输出 1 到 N(包含 1 和 N)之间所有奇数的和。 【输入描述】 输入一个正整数 N(N < 100) 【输出描述】 输出 1 到 N 之间的所有奇数的和 【输入样例】 3【输出样例】 4答案&…

Llama模型家族之拒绝抽样(Rejection Sampling)(九) 强化学习之Rejection Sampling

LlaMA 3 系列博客 基于 LlaMA 3 LangGraph 在windows本地部署大模型 &#xff08;一&#xff09; 基于 LlaMA 3 LangGraph 在windows本地部署大模型 &#xff08;二&#xff09; 基于 LlaMA 3 LangGraph 在windows本地部署大模型 &#xff08;三&#xff09; 基于 LlaMA…

利用streamlit结合langchain_aws实现claud3的页面交互

测试使用的代码如下 import streamlit as st from langchain_aws import ChatBedrockdef chat_with_model(prompt, model_id):llm ChatBedrock(credentials_profile_name"default", model_idmodel_id, region_name"us-east-1")res llm.invoke(prompt)re…

UiPath发送邮件给多人时需要注意哪些限制?

UiPath发送邮件给多人的步骤&#xff1f;如何使用UiPath发信&#xff1f; 尽管UiPath提供了强大的邮件发送功能&#xff0c;但在批量发送邮件时&#xff0c;有一些限制和注意事项是我们必须了解的。AokSend将详细介绍这些限制&#xff0c;并提供一些优化建议。 UiPath发送邮件…

视频监控管理平台LntonCVS视频汇聚平台充电桩视频监控应用方案

随着新能源汽车的广泛使用&#xff0c;公众对充电设施的安全性和可靠性日益重视。为了提高充电桩的安全管理和站点运营效率&#xff0c;LntonCVS公司推出了一套全面的新能源汽车充电桩视频监控与管理解决方案。 该方案通过安装高分辨率摄像头&#xff0c;对充电桩及其周边区域进…

纷享销客安全体系:安全合规认证

安全合规认证是指组织通过独立的第三方机构对其信息系统和数据进行评估和审查&#xff0c;以确认其符合相关的安全标准、法律法规和行业要求的过程。 安全合规认证可以帮助组织提高信息系统和数据的安全性&#xff0c;并向客户、合作伙伴和监管机构证明其符合相关的安全标准和…

python协程入门实战详解

本章将以通俗易懂、贴合实际的方式介绍以下内容&#xff1a; 协程是什么&#xff0c;有什么特点&#xff0c;协程的优势是什么如何理解事件和事件循环协程的创建方式&#xff0c;如何控制协程的并发量在协程中使用aiohttp发送HTTP请求aiohttp案例协程中的异常处理&#xff0c;…

如何使用Python的Turtle模块绘制小猪

一、前置条件 在开始学习如何使用Python的Turtle模块进行绘画之前&#xff0c;请确保你的电脑已安装Python环境。如果尚未安装Python&#xff0c;你可以从Python官网下载并安装最新版本。 Turtle模块是Python内置的一个用于绘图的库&#xff0c;通常不需要额外安装。如果你发…

使用 Ollama 和 Open WebUI 自托管 LLM 聊天机器人(无需 GPU)

✨点击这里✨&#xff1a;&#x1f680;原文链接&#xff1a;&#xff08;更好排版、视频播放、社群交流、最新AI开源项目、AI工具分享都在这个公众号&#xff01;&#xff09; 使用 Ollama 和 Open WebUI 自托管 LLM 聊天机器人&#xff08;无需 GPU&#xff09; &#x1f31…

linux指令--sed

sed 主要用来自动编辑一个或多个文件、简化对文件的反复操作、编写转换程序等。 语法解析 sed [选项] 编辑命令 文件 选项&#xff1a; -n&#xff1a;只显示匹配处理的行-e&#xff1a;执行多个编辑命令时-i&#xff1a;在原文件中进行修改&#xff0c;不输出到屏幕-…

Windows下对于Qt中带 / 的路径的处理

在Windows下&#xff0c;如果你想使用操作系统的分隔符显示用户的路径&#xff0c;请使用 toNativeSeparators()。 请看以下代码&#xff1a; void Player::on_playBtn_clicked() {if (this->m_url.isEmpty()) {openMedia();if (this->m_url.isEmpty())return;}qDebug(…

机器学习作业6——svm支持向量机

目录 一、理论 概念&#xff1a; 线性可分&#xff1a; 支持向量&#xff1a; 间隔&#xff1a; 目标&#xff1a; 软间隔&#xff1a; 梯度下降法&#xff1a; 别的方法&#xff1a; 拉格朗日函数&#xff1a; SMO算法&#xff1a; 核函数&#xff1a; 二、代码 …

数据结构之ArrayList与顺序表(下)

找往期文章包括但不限于本期文章中不懂的知识点&#xff1a; 个人主页&#xff1a;我要学编程(ಥ_ಥ)-CSDN博客 所属专栏&#xff1a;数据结构&#xff08;Java版&#xff09; 目录 ArrayList的具体使用 118. 杨辉三角 扑克洗牌算法 接上篇&#xff1a;数据结构之ArrayLis…

三端植物大战僵尸杂交版来了

Hi&#xff0c;好久不见&#xff0c;最近植物大战僵尸杂交版蛮火的 那今天苏音整理给大家三端的植物大战僵尸杂交版包括【苹果端、电脑端、安卓端】 想要下载的直接划到最下方即可下载。 植物大战僵尸&#xff0c;作为一款古老的单机游戏&#xff0c;近期随着B站一位UP主潜艇…

英伟达黄仁勋最新主题演讲:“机器人时代“已经到来

6月2日&#xff0c;英伟达联合创始人兼首席执行官黄仁勋在Computex 2024&#xff08;2024台北国际电脑展&#xff09;上发表主题演讲&#xff0c;分享了人工智能时代如何助推全球新产业革命。 黄仁勋表示&#xff0c;机器人时代已经到来&#xff0c;将来所有移动的物体都将实现…

开源与新质生产力

在这个信息技术迅猛发展的时代&#xff0c;全球范围内的产业都在经历着深刻的变革。在这样的背景下&#xff0c;“新质生产力”的概念引起了广泛的讨论。无论是已经成为或正努力转型成为新质生产力的企业&#xff0c;都在寻求新的增长动力和竞争优势。作为一名长期从事开源领域…

什么是2+1退休模式?什么是链动2+1模式?

21退休模式又称链动21模式&#xff0c;主要是建立团队模式&#xff0c;同时快速提升销量。是目前成熟模式中裂变速度最快的模式。21退休模式合理合规&#xff0c;同时激励用户公司的利润分享机制&#xff0c;让您在享受购物折扣的同时&#xff0c;也能促进并获得客观收益。 模…

kettle从入门到精通 第六十六课 ETL之kettle kettle阻塞教程,轻松获取最后一行数据,so easy

场景:ETL沟通交流群内有小伙伴反馈,如何在同步一批数据完成之后记录下同步结果呢?或者是调用后续步骤、存储过程、三方接口等。 解决:使用步骤Blocking step进行阻塞处理即可。 1、下面的demo演示从表t1同步数据至表t2(t1表中有三条数据,t2为空表,两个表表结构相同),…