Llama模型家族之拒绝抽样(Rejection Sampling)(九) 强化学习之Rejection Sampling

news2024/11/27 20:35:29

LlaMA 3 系列博客

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (一)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (二)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (三)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (四)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (五)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (六)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (七)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (八)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (九)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (十)

构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(一)

构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(二)

构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(三)

构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(四)

构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(五)

你好 GPT-4o!

大模型标记器之Tokenizer可视化(GPT-4o)

大模型标记器 Tokenizer之Byte Pair Encoding (BPE) 算法详解与示例

大模型标记器 Tokenizer之Byte Pair Encoding (BPE)源码分析

大模型之自注意力机制Self-Attention(一)

大模型之自注意力机制Self-Attention(二)

大模型之自注意力机制Self-Attention(三)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (十一)

Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (一)

Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (二)

Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (三)

Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (四)

Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (五)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话(一)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话(二)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话(三)

大模型之深入理解Transformer位置编码(Positional Embedding)

大模型之深入理解Transformer Layer Normalization(一)

大模型之深入理解Transformer Layer Normalization(二)

大模型之深入理解Transformer Layer Normalization(三)

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(一)初学者的起点

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(二)矩阵操作的演练

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(三)初始化一个嵌入层

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(四)预先计算 RoPE 频率

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(五)预先计算因果掩码

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(六)首次归一化:均方根归一化(RMSNorm)

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(七) 初始化多查询注意力

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(八)旋转位置嵌入

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(九) 计算自注意力

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(十) 残差连接及SwiGLU FFN

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(十一)输出概率分布 及损失函数计算

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(一)加载简化分词器及设置参数

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(二)RoPE 及注意力机制

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(三) FeedForward 及 Residual Layers

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(四) 构建 Llama3 类模型本身

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(五)训练并测试你自己的 minLlama3

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(六)加载已经训练好的miniLlama3模型

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (四)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (五)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (六)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (七)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (八)

Llama 3 模型家族构建安全可信赖企业级AI应用之 CyberSecEval 2:量化 LLM 安全和能力的基准(一)

Llama 3 模型家族构建安全可信赖企业级AI应用之 CyberSecEval 2:量化 LLM 安全和能力的基准(二)

Llama 3 模型家族构建安全可信赖企业级AI应用之 CyberSecEval 2:量化 LLM 安全和能力的基准(三)

Llama 3 模型家族构建安全可信赖企业级AI应用之 CyberSecEval 2:量化 LLM 安全和能力的基准(四)

Llama 3 模型家族构建安全可信赖企业级AI应用之code shield(一)Code Shield简介

Llama 3 模型家族构建安全可信赖企业级AI应用之code shield(二)防止 LLM 生成不安全代码

Llama 3 模型家族构建安全可信赖企业级AI应用之code shield(三)Code Shield代码示例

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(一) LLaMA-Factory简介

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(二) LLaMA-Factory训练方法及数据集

大模型之Ollama:在本地机器上释放大型语言模型的强大功能

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(三)通过Web UI微调

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(四)通过命令方式微调

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(五) 基于已训练好的模型进行推理

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(六)Llama 3 已训练的大模型合并LoRA权重参数

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(七) 使用 LoRA 微调 LLM 的实用技巧

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(八) 使用 LoRA 微调 LLM 的实用技巧

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(九) 使用 LoRA 微调常见问题答疑

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(十) 使用 LoRA 微调常见问题答疑

Llama模型家族训练奖励模型Reward Model技术及代码实战(一)简介

Llama模型家族训练奖励模型Reward Model技术及代码实战(二)从用户反馈构建比较数据集

Llama模型家族训练奖励模型Reward Model技术及代码实战(三) 使用 TRL 训练奖励模型

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(一)RLHF简介

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(二)RLHF 与RAIF比较

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(三) RLAIF 的工作原理

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(四)RLAIF 优势

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(五)RLAIF 挑战

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(六) RLAIF 代码实战

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(七) RLAIF 代码实战

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(八) RLAIF 代码实战

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(九) RLAIF 代码实战

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(十) RLAIF 代码实战

Llama模型家族之拒绝抽样(Rejection Sampling)(一)

Llama模型家族之拒绝抽样(Rejection Sampling)(二)均匀分布简介

Llama模型家族之拒绝抽样(Rejection Sampling)(三)确定缩放常数以优化拒绝抽样方法

Llama模型家族之拒绝抽样(Rejection Sampling)(四) 蒙特卡罗方法在拒绝抽样中的应用:评估线与样本接受标准

Llama模型家族之拒绝抽样(Rejection Sampling)(五) 蒙特卡罗算法在拒绝抽样中:均匀分布与样本接受标准

Llama模型家族之拒绝抽样(Rejection Sampling)(六) 拒绝抽样中的蒙特卡罗算法:重复过程与接受标准

Llama模型家族之拒绝抽样(Rejection Sampling)(七) 优化拒绝抽样:选择高斯分布以减少样本拒绝

Llama模型家族之拒绝抽样(Rejection Sampling)(八) 代码实现

Llama模型家族之拒绝抽样(Rejection Sampling)(九) 强化学习之Rejection Sampling

Llama paper

https://arxiv.org/abs/2307.09288

在这里插入图片描述

在这里插入图片描述

拒绝采样:迭代优化的路径

拒绝采样技术要求模型对同一个提示(prompt)生成多个答案,通常称之为K个答案。然后,利用奖励模型(Reward Model, RM)对这些答案进行评分,挑选出得分最高、表现最优的答案。这一过程不仅提升了模型的生成质量,也为模型的进一步训练提供了优质样本。

模型大小与拒绝采样

值得注意的是,Llama项目在70B规模的模型上应用了拒绝采样技术,而对于更小规模的模型(如7B和13B),则是通过蒸馏70B模型的生成结果来实现性能提升。这种选择背后的逻辑是,规模更大的模型在生成高质量和多样化答案方面具有天然优势。

多阶段优化的重要性

拒绝采样是一个多阶段的过程,模型会经历一次又一次的更新。在这个过程中,我们应该收集每个阶段产生的最优样本,而不仅仅是最近一次迭代的结果。这种方法有助于模型在不同阶段都能吸取到有价值的信息,从而实现更全面的能力提升。

使用「最优分数样本」和「分数居中样本」训练模型的 reward 变化趋势图:
在这里插入图片描述

训练模型:最优样本与居中分数样本的对比

通过对比使用“最优分数样本”和“分数居中样本”训练模型的reward变化趋势, 可以发现一些有趣的现象。使用最优样本训练的模型能够达到更高的性能上限,而使用居中分数样本的模型性能提升则相对有限。

候选样本的生成:温度的调节

候选样本的生成主要依赖于调整模型的参数——temperature。不同的temperature值对模型生成的多样性和质量有着显著影响:

  • 当temperature设置过低时,生成的答案可能过于固定,缺乏探索性,这会限制模型发现优秀样本的机会。
  • 当temperature设置过高时,生成的答案可能过于随机,导致模型忽略已学到的概率分布,生成不合理的答案。

在这里插入图片描述

温度的最优选择

为了实现最佳的采样效果,选择一个适中的temperature至关重要。根据实验结果,将temperature设置在0.8到0.9之间是一个合适的选择,它能够平衡模型的探索性和生成质量。

拒绝采样技术 提供了一种有效的方法来提升AI模型的生成能力。通过精心设计的迭代过程和参数调整, 可以使模型在生成高质量答案的同时,保持答案的多样性和创新性。

大模型技术分享

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

《企业级生成式人工智能LLM大模型技术、算法及案例实战》线上高级研修讲座

模块一:Generative AI 原理本质、技术内核及工程实践周期详解
模块二:工业级 Prompting 技术内幕及端到端的基于LLM 的会议助理实战
模块三:三大 Llama 2 模型详解及实战构建安全可靠的智能对话系统
模块四:生产环境下 GenAI/LLMs 的五大核心问题及构建健壮的应用实战
模块五:大模型应用开发技术:Agentic-based 应用技术及案例实战
模块六:LLM 大模型微调及模型 Quantization 技术及案例实战
模块七:大模型高效微调 PEFT 算法、技术、流程及代码实战进阶
模块八:LLM 模型对齐技术、流程及进行文本Toxicity 分析实战
模块九:构建安全的 GenAI/LLMs 核心技术Red Teaming 解密实战
模块十:构建可信赖的企业私有安全大模型Responsible AI 实战 

Llama3关键技术深度解析与构建Responsible AI、算法及开发落地实战

1、Llama开源模型家族大模型技术、工具和多模态详解:学员将深入了解Meta Llama 3的创新之处,比如其在语言模型技术上的突破,并学习到如何在Llama 3中构建trust and safety AI。他们将详细了解Llama 3的五大技术分支及工具,以及如何在AWS上实战Llama指令微调的案例。
2、解密Llama 3 Foundation Model模型结构特色技术及代码实现:深入了解Llama 3中的各种技术,比如Tiktokenizer、KV Cache、Grouped Multi-Query Attention等。通过项目二逐行剖析Llama 3的源码,加深对技术的理解。
3、解密Llama 3 Foundation Model模型结构核心技术及代码实现:SwiGLU Activation Function、FeedForward Block、Encoder Block等。通过项目三学习Llama 3的推理及Inferencing代码,加强对技术的实践理解。
4、基于LangGraph on Llama 3构建Responsible AI实战体验:通过项目四在Llama 3上实战基于LangGraph的Responsible AI项目。他们将了解到LangGraph的三大核心组件、运行机制和流程步骤,从而加强对Responsible AI的实践能力。
5、Llama模型家族构建技术构建安全可信赖企业级AI应用内幕详解:深入了解构建安全可靠的企业级AI应用所需的关键技术,比如Code Llama、Llama Guard等。项目五实战构建安全可靠的对话智能项目升级版,加强对安全性的实践理解。
6、Llama模型家族Fine-tuning技术与算法实战:学员将学习Fine-tuning技术与算法,比如Supervised Fine-Tuning(SFT)、Reward Model技术、PPO算法、DPO算法等。项目六动手实现PPO及DPO算法,加强对算法的理解和应用能力。
7、Llama模型家族基于AI反馈的强化学习技术解密:深入学习Llama模型家族基于AI反馈的强化学习技术,比如RLAIF和RLHF。项目七实战基于RLAIF的Constitutional AI。
8、Llama 3中的DPO原理、算法、组件及具体实现及算法进阶:学习Llama 3中结合使用PPO和DPO算法,剖析DPO的原理和工作机制,详细解析DPO中的关键算法组件,并通过综合项目八从零开始动手实现和测试DPO算法,同时课程将解密DPO进阶技术Iterative DPO及IPO算法。
9、Llama模型家族Safety设计与实现:在这个模块中,学员将学习Llama模型家族的Safety设计与实现,比如Safety in Pretraining、Safety Fine-Tuning等。构建安全可靠的GenAI/LLMs项目开发。
10、Llama 3构建可信赖的企业私有安全大模型Responsible AI系统:构建可信赖的企业私有安全大模型Responsible AI系统,掌握Llama 3的Constitutional AI、Red Teaming。

解码Sora架构、技术及应用

一、为何Sora通往AGI道路的里程碑?
1,探索从大规模语言模型(LLM)到大规模视觉模型(LVM)的关键转变,揭示其在实现通用人工智能(AGI)中的作用。
2,展示Visual Data和Text Data结合的成功案例,解析Sora在此过程中扮演的关键角色。
3,详细介绍Sora如何依据文本指令生成具有三维一致性(3D consistency)的视频内容。 4,解析Sora如何根据图像或视频生成高保真内容的技术路径。
5,探讨Sora在不同应用场景中的实践价值及其面临的挑战和局限性。

二、解码Sora架构原理
1,DiT (Diffusion Transformer)架构详解
2,DiT是如何帮助Sora实现Consistent、Realistic、Imaginative视频内容的?
3,探讨为何选用Transformer作为Diffusion的核心网络,而非技术如U-Net。
4,DiT的Patchification原理及流程,揭示其在处理视频和图像数据中的重要性。
5,Conditional Diffusion过程详解,及其在内容生成过程中的作用。
三、解码Sora关键技术解密
1,Sora如何利用Transformer和Diffusion技术理解物体间的互动,及其对模拟复杂互动场景的重要性。
2,为何说Space-time patches是Sora技术的核心,及其对视频生成能力的提升作用。
3,Spacetime latent patches详解,探讨其在视频压缩和生成中的关键角色。
4,Sora Simulator如何利用Space-time patches构建digital和physical世界,及其对模拟真实世界变化的能力。
5,Sora如何实现faithfully按照用户输入文本而生成内容,探讨背后的技术与创新。
6,Sora为何依据abstract concept而不是依据具体的pixels进行内容生成,及其对模型生成质量与多样性的影响。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1802808.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

利用streamlit结合langchain_aws实现claud3的页面交互

测试使用的代码如下 import streamlit as st from langchain_aws import ChatBedrockdef chat_with_model(prompt, model_id):llm ChatBedrock(credentials_profile_name"default", model_idmodel_id, region_name"us-east-1")res llm.invoke(prompt)re…

UiPath发送邮件给多人时需要注意哪些限制?

UiPath发送邮件给多人的步骤?如何使用UiPath发信? 尽管UiPath提供了强大的邮件发送功能,但在批量发送邮件时,有一些限制和注意事项是我们必须了解的。AokSend将详细介绍这些限制,并提供一些优化建议。 UiPath发送邮件…

视频监控管理平台LntonCVS视频汇聚平台充电桩视频监控应用方案

随着新能源汽车的广泛使用,公众对充电设施的安全性和可靠性日益重视。为了提高充电桩的安全管理和站点运营效率,LntonCVS公司推出了一套全面的新能源汽车充电桩视频监控与管理解决方案。 该方案通过安装高分辨率摄像头,对充电桩及其周边区域进…

纷享销客安全体系:安全合规认证

安全合规认证是指组织通过独立的第三方机构对其信息系统和数据进行评估和审查,以确认其符合相关的安全标准、法律法规和行业要求的过程。 安全合规认证可以帮助组织提高信息系统和数据的安全性,并向客户、合作伙伴和监管机构证明其符合相关的安全标准和…

python协程入门实战详解

本章将以通俗易懂、贴合实际的方式介绍以下内容: 协程是什么,有什么特点,协程的优势是什么如何理解事件和事件循环协程的创建方式,如何控制协程的并发量在协程中使用aiohttp发送HTTP请求aiohttp案例协程中的异常处理,…

如何使用Python的Turtle模块绘制小猪

一、前置条件 在开始学习如何使用Python的Turtle模块进行绘画之前,请确保你的电脑已安装Python环境。如果尚未安装Python,你可以从Python官网下载并安装最新版本。 Turtle模块是Python内置的一个用于绘图的库,通常不需要额外安装。如果你发…

使用 Ollama 和 Open WebUI 自托管 LLM 聊天机器人(无需 GPU)

✨点击这里✨:🚀原文链接:(更好排版、视频播放、社群交流、最新AI开源项目、AI工具分享都在这个公众号!) 使用 Ollama 和 Open WebUI 自托管 LLM 聊天机器人(无需 GPU) &#x1f31…

linux指令--sed

sed 主要用来自动编辑一个或多个文件、简化对文件的反复操作、编写转换程序等。 语法解析 sed [选项] 编辑命令 文件 选项: -n:只显示匹配处理的行-e:执行多个编辑命令时-i:在原文件中进行修改,不输出到屏幕-…

Windows下对于Qt中带 / 的路径的处理

在Windows下,如果你想使用操作系统的分隔符显示用户的路径,请使用 toNativeSeparators()。 请看以下代码: void Player::on_playBtn_clicked() {if (this->m_url.isEmpty()) {openMedia();if (this->m_url.isEmpty())return;}qDebug(…

机器学习作业6——svm支持向量机

目录 一、理论 概念: 线性可分: 支持向量: 间隔: 目标: 软间隔: 梯度下降法: 别的方法: 拉格朗日函数: SMO算法: 核函数: 二、代码 …

数据结构之ArrayList与顺序表(下)

找往期文章包括但不限于本期文章中不懂的知识点: 个人主页:我要学编程(ಥ_ಥ)-CSDN博客 所属专栏:数据结构(Java版) 目录 ArrayList的具体使用 118. 杨辉三角 扑克洗牌算法 接上篇:数据结构之ArrayLis…

三端植物大战僵尸杂交版来了

Hi,好久不见,最近植物大战僵尸杂交版蛮火的 那今天苏音整理给大家三端的植物大战僵尸杂交版包括【苹果端、电脑端、安卓端】 想要下载的直接划到最下方即可下载。 植物大战僵尸,作为一款古老的单机游戏,近期随着B站一位UP主潜艇…

英伟达黄仁勋最新主题演讲:“机器人时代“已经到来

6月2日,英伟达联合创始人兼首席执行官黄仁勋在Computex 2024(2024台北国际电脑展)上发表主题演讲,分享了人工智能时代如何助推全球新产业革命。 黄仁勋表示,机器人时代已经到来,将来所有移动的物体都将实现…

开源与新质生产力

在这个信息技术迅猛发展的时代,全球范围内的产业都在经历着深刻的变革。在这样的背景下,“新质生产力”的概念引起了广泛的讨论。无论是已经成为或正努力转型成为新质生产力的企业,都在寻求新的增长动力和竞争优势。作为一名长期从事开源领域…

什么是2+1退休模式?什么是链动2+1模式?

21退休模式又称链动21模式,主要是建立团队模式,同时快速提升销量。是目前成熟模式中裂变速度最快的模式。21退休模式合理合规,同时激励用户公司的利润分享机制,让您在享受购物折扣的同时,也能促进并获得客观收益。 模…

kettle从入门到精通 第六十六课 ETL之kettle kettle阻塞教程,轻松获取最后一行数据,so easy

场景:ETL沟通交流群内有小伙伴反馈,如何在同步一批数据完成之后记录下同步结果呢?或者是调用后续步骤、存储过程、三方接口等。 解决:使用步骤Blocking step进行阻塞处理即可。 1、下面的demo演示从表t1同步数据至表t2(t1表中有三条数据,t2为空表,两个表表结构相同),…

Plotly : 超好用的Python可视化工具

文章目录 安装:开始你的 Plotly 之旅基本折线图:简单却强大的起点带颜色的散点图:数据的多彩世界三维曲面图:探索数据的深度气泡图:让世界看到你的数据小提琴图:数据分布的优雅展现旭日图:分层数…

Vue学习day05笔记

day05 一、学习目标 1.自定义指令 基本语法(全局、局部注册)指令的值v-loading的指令封装 2.插槽 默认插槽具名插槽作用域插槽 3.综合案例:商品列表 MyTag组件封装MyTable组件封装 4.路由入门 单页应用程序路由VueRouter的基本使用 …

认识Java中的String类

前言 大家好呀,本期将要带大家认识一下Java中的String类,本期注意带大家认识一些String类常用方法,和区分StringBuffer和StringBuilder感谢大家收看 一,String对象构造方法与原理 String类为我们提供了非常多的重载的构造方法让…

kubesz(一键安装k8s)

引言 Kubernetes(K8s)是一个开源的容器编排系统,用于自动化部署、扩展和管理容器化应用程序。kubeasz 是一个用于快速搭建 Kubernetes 高可用集群的项目,它基于 Ansible,通过提供一套简单、易用的配置,使得…