动手学深度学习29 残差网络ResNet

news2024/7/6 19:26:57

动手学深度学习29 残差网络ResNet

  • ResNet
  • 代码
    • ReLU的两种调用
      • 1. 使用 `torch.nn.ReLU` 模块
      • 2. 使用 `torch.nn.functional.relu` 函数
      • 总结
  • QA
  • 29.2 ResNet 为什么能训练处1000层的模型
  • ResNet的梯度计算
    • 怎么处理梯度消失的
  • QA

ResNet

在这里插入图片描述

更复杂模型包含小模型,不一定改进,但是加更深的层更复杂的模型至少不会变差。
在这里插入图片描述
复杂模型包含小模型,当要新加的层没有学到任何东西的时候,模型仍旧是可以学到前面层已经学到了的知识。可以认为是嵌入了小网络,允许先学习小网络。
在这里插入图片描述
从vgg过来。1*1卷积是为了改变通道数,和ResNet块输出的通道数保持一致,这样能做对应位置元素加法。
在这里插入图片描述
核心:加了一个加法。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

152个卷积层。层数越高精度越高。34个卷积层用的比较多。刷榜经常用152【实际使用很少,训练太贵】
在这里插入图片描述
ResNet的思想 Residual Connections(残差连接)当前经常使用,例如 bert, transformer。

不管再深,总是先训练好小网络,再往深层训练。
在这里插入图片描述

代码

用了比较大的输入。调优ResNet–把输入搞小或者调小config?

import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l

class Residual(nn.Module):
  def __init__(self, input_channels, num_channels, use_1x1conv=False, strides=1):
    super().__init__()
    self.conv1 = nn.Conv2d(input_channels, num_channels, kernel_size=3, padding=1, stride=strides)
    self.conv2 = nn.Conv2d(num_channels, num_channels, kernel_size=3, padding=1)
    if use_1x1conv:
      self.conv3 = nn.Conv2d(input_channels, num_channels, kernel_size=1, stride=strides)
    else:
      self.conv3 = None
    self.bn1 = nn.BatchNorm2d(num_channels)
    self.bn2 = nn.BatchNorm2d(num_channels)

  def forward(self, X):
    Y = F.relu(self.bn1(self.conv1(X)))
    Y = self.bn2(self.conv2(Y))
    if self.conv3:
      X = self.conv3(X)
    Y += X
    return F.relu(Y)

# 只传输入输出通道数 不设置使用残差连接 不改变高宽
blk = Residual(3, 3)
X = torch.rand(4, 3, 6, 6)
Y = blk(X)
# stride 不传参 默认为1
print(Y.shape)  # torch.Size([4, 3, 6, 6])

# stride=2 高宽减半 输出通道数加倍
blk = Residual(3,6, use_1x1conv=True, strides=2)
print(blk(X).shape)  # torch.Size([4, 6, 3, 3])

# 设置第一个网络块 7*7卷积 stride=2 3*3池化层 stride=2  高宽降低4倍
b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3), 
           nn.BatchNorm2d(64), 
           nn.ReLU(), 
           nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

# 残差块
def resnet_block(input_channels, num_channels, num_residuals, first_block=False):
  blk = []
  for i in range(num_residuals):
    if i == 0 and not first_block:
      blk.append(Residual(input_channels, num_channels, use_1x1conv=True, strides=2))
    else:
      blk.append(Residual(num_channels, num_channels))
  return blk

b2 = nn.Sequential(*resnet_block(64, 64, 2, first_block=True))
b3 = nn.Sequential(*resnet_block(64, 128, 2))
b4 = nn.Sequential(*resnet_block(128, 256, 2))
b5 = nn.Sequential(*resnet_block(256, 512, 2))

net = nn.Sequential(b1, b2, b3, b4, b5,
           nn.AdaptiveAvgPool2d((1,1)),
           nn.Flatten(), 
           nn.Linear(512, 10))

# 用了比较大的输入数据 高宽224 VGG用的是96高宽
X = torch.rand(size=(1, 1, 224, 224))
for layer in net:
  X = layer(X)
  print(layer.__class__.__name__, 'output shape:\t', X.shape)

lr, num_epochs, batch_size = 0.05, 10, 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
torch.Size([4, 3, 6, 6])
torch.Size([4, 6, 3, 3])
Sequential output shape:	 torch.Size([1, 64, 56, 56])
Sequential output shape:	 torch.Size([1, 64, 56, 56])
Sequential output shape:	 torch.Size([1, 128, 28, 28])
Sequential output shape:	 torch.Size([1, 256, 14, 14])
Sequential output shape:	 torch.Size([1, 512, 7, 7])
AdaptiveAvgPool2d output shape:	 torch.Size([1, 512, 1, 1])
Flatten output shape:	 torch.Size([1, 512])
Linear output shape:	 torch.Size([1, 10])
loss 0.012, train acc 0.997, test acc 0.913
1557.1 examples/sec on cuda:0

在这里插入图片描述

d2l.load_data_fashion_mnist(batch_size, resize=224)
loss 0.027, train acc 0.993, test acc 0.876
354.8 examples/sec on cuda:0

在这里插入图片描述

ReLU的两种调用

在 PyTorch 中,可以通过多种方式调用 ReLU(Rectified Linear Unit)激活函数。以下是几种常见的方法:

1. 使用 torch.nn.ReLU 模块

torch.nn.ReLU 是一个 PyTorch 模块,可以直接在模型中作为层来使用。

import torch
import torch.nn as nn

# 创建一个 ReLU 模块实例
relu = nn.ReLU()

# 示例输入张量
input_tensor = torch.tensor([-1.0, 0.0, 1.0, 2.0])

# 应用 ReLU 激活函数
output_tensor = relu(input_tensor)
print(output_tensor)

2. 使用 torch.nn.functional.relu 函数

torch.nn.functional.relu 是一个函数,可以直接应用于张量。这在编写自定义前向传播方法时非常有用。

import torch
import torch.nn.functional as F

# 示例输入张量
input_tensor = torch.tensor([-1.0, 0.0, 1.0, 2.0])

# 应用 ReLU 激活函数
output_tensor = F.relu(input_tensor)
print(output_tensor)

总结

  • torch.nn.ReLU:作为模块使用,适合在构建模型时作为层的一部分。
  • torch.nn.functional.relu:作为函数使用,适合在自定义的前向传播方法中调用。

QA

1 lenet batch_size > 1000 大部分图片都是相似的,影响收敛精度。
2 当f(x)=x+g(x)时,如果x的效果已经很好,那么g(x)训练可能拿不到梯度,做梯度反传的时候,梯度会是一个很小的值,那么ResNet在做更深的网络的时候,不会让模型变得更坏,一般会变好。
3 绿色线-cos学习率 【效果挺好】 调参简单–调个最大值最小值。
在这里插入图片描述
4 残差怎么理解
layer2在layer1的基础上训练一些误差,在layer1的基础上做叠加。底层网络没有fit好的东西,加深的网络继续去fit。
在这里插入图片描述
5 * 解包裹传递参数 把list列表参数解包裹传参
6 两个BN有自己的参数要学 参数不一样
7 nn.ReLU(inplace=True) 原地更新参数 省一点内存
8 输入尺寸的确定,是由数据和框架确定?
9 当训练数据中加入了大量的噪音,测试精度会大于训练精度,在实际使用中 经常测试精度会大于训练精度。
达不到100%识别,本身技术水平达不到+数据集也会有标错的
10 不能假设数据集是完全正确的。还有数据人本身都无法分辨–hardcase。关心数据里面的误差。比较容易的case模型很容易训练好。

29.2 ResNet 为什么能训练处1000层的模型

https://www.bilibili.com/video/BV1554y157E3/?spm_id_from=autoNext&vd_source=eb04c9a33e87ceba9c9a2e5f09752ef8

ResNet的梯度计算

避免梯度消失:把乘法变加法。

怎么处理梯度消失的

假设省略loss, 希望偏y偏w不要很小,学习的不要很慢。
把网络加深,加一些层。
梯度怎么展开的–链式法则
导数和真实值预测值的区别是有一定关系的,预测比较好的情况下,导数会很小,做乘法后整体梯度会比原来梯度小很多。
假设残差网络为y" , 当g(x)的梯度很小的时候,加和的梯度也会比原来很小。大数+小数=大数 大数*小数=小数。当靠近底部的层,梯度会很小,避免梯度消失。
靠近数据端的w是很难训练的,由于有跳转,在训练一开始的时候,靠近数据端的网络就会拿到比较大的梯度。
在这里插入图片描述

QA

1 在靠近输入的学习率设大一些 靠近输出的lr学习率设小一些 可以缓解梯度消失的问题,但是调数比较难【设多大多小】。当超过浮点数的精度,计算会出问题, 小到很小梯度会为0, 精度fp16问题更明显一些。残差连接不需要调太多的东西。
2 梯度是累乘的, 深层的网络,梯度值和误差值有关,梯度回传越往网络底层会慢慢吸收掉误差,误差会越小。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1798804.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

CNN依旧能战:nnU-Net团队新研究揭示医学图像分割的验证误区,设定先进的验证标准与基线模型

这篇论文研究了在3D医学图像分割领近年引入了许多新的架构和方法,但大多数方法并没有超过2018年的原始nnU-Net基准。作者指出,许多关于新方法的优越性的声称在进行严格验证后并不成立,这揭示了当前在方法验证上存在的不严谨性。 揭示验证短板…

MySQL将错乱的水果信息,截取展示为 品名 英文名 价格 三列展示

将错乱的水果信息,截取展示为 品名 英文名 价格 三列展示 idname1苹果Apple72Plum6李子3Pineapple8菠萝4Mango5芒果5龙吐珠5Buddha’sHand6Olive9橄榄7Raspberry4树莓8Apricot5杏子9Grapefruit9柚子10火龙果Dragonfruit911倒挂金钟Hanging6LobsterClaw12巨峰葡萄Co…

论道数字化:2024年企业增长密码在哪里?

企业微信正在成为一个中国TO B数字化工具中的特殊个体。 它既具备TO B服务的能力,能帮助企业构建从办公到内部协同管理,帮助企业修炼内功;同时它更是企业面向C端的连接器,基于自身足够显著的C端标签,其几乎可以算是国…

企业必备技能导航栏的写法

创建一个导航栏是网页设计中的一个重要环节,它不仅有助于用户快速找到他们需要的信息,还能提升整个网站的用户体验。以下是一些基本步骤和技巧,可以帮助你快速制作一个高效且美观的导航栏: 确定导航栏位置:导航栏通常位…

Stable Diffusion WebUI 各操作系统安装教程

最近几天在 2 台 Mac、2 台 PC、一台云无 GPU 的 Linux 安装了 Stable Diffusion WebUI,这里记录下如何安装,以及一些注意点和坑。 以下内容针对 Windows(N 卡)、MacOS(m 系列芯片)、Linux(Ubu…

打造精美电子画册,提升企业形象的方法

在当今数字化时代,企业形象的表达方式正在发生深刻变革。精美电子画册作为一种新兴的传播媒介,不仅能够展现企业风采、提升品牌价值,还能够吸引潜在客户、增强市场竞争力。 接下来告诉大家一些简单的制作方法,可以收藏起来哦 1.首…

vue3+vite插件开发

插件开发目的:由于我司使用的前端技术栈为vue3tsvite2.Xaxios,在前端代码框架设计初期,做了把axios挂载到proxy对象上的操作,具体可见我的另一篇文章vue3TS自动化封装全局api_ts 封装腾讯位置api-CSDN博客 现在可以实现vue2的类似this.$api.xxx去调用接口,但是vue2源码使用的是…

Visual C++ Redistributable下载

安装程序的时候提示丢失mfc140u.dll 如下图,查了资料说可以下载Visual C Redistributable来进行处理 下载Visual C Redistributable 1.打开网站 https://www.microsoft.com/zh-cn/download/details.aspx?id48145&751be11f-ede8-5a0c-058c-2ee190a24fa6True) 2.点击下载 …

Python 机器学习 基础 之 处理文本数据 【处理文本数据/用字符串表示数据类型/将文本数据表示为词袋】的简单说明

Python 机器学习 基础 之 处理文本数据 【处理文本数据/用字符串表示数据类型/将文本数据表示为词袋】的简单说明 目录 Python 机器学习 基础 之 处理文本数据 【处理文本数据/用字符串表示数据类型/将文本数据表示为词袋】的简单说明 一、简单介绍 二、处理文本数据 三、用…

linux 服务器上离线安装 node nvm

因为是离线环境 如果你是可以访问外网的 下面内容仅供参考 也可以继续按步骤来 node 安装路径 Node.js — Download Node.js nvm 安装路径 Tags nvm-sh/nvm GitHub 后来发现 nvm安装后 nvm use 版本号 报错 让我去nvm install 版本 我是内网环境 install不了 下面 你要 把安…

K210视觉识别模块学习笔记4: (MaixHub)训练与使用自己的模型_识别字母

今日开始学习K210视觉识别模块: 模型训练与使用_识别字母 亚博智能的K210视觉识别模块...... 固件库: maixpy_v0.6.2_52_gb1a1c5c5d_minimum_with_ide_support.bin 文章提供测试代码讲解、完整代码贴出、测试效果图、测试工程下载 这里也算是正式开始进入到视觉识别的领域了…

问题:1、彩色餐巾可以渲染就餐气氛,下列说法错误的是 #知识分享#其他

问题:1、彩色餐巾可以渲染就餐气氛,下列说法错误的是 A.如艳红、大红餐巾给人以庄重热烈的感觉; B.橘黄、鹅黄色餐巾给人以高贵典雅的感觉; C.湖蓝色在夏天能给人以凉爽、舒适之感&#xff1…

python脚本打包为exe并在服务器上设置定时执行

python脚本打包为exe并在服务器上设置定时执行 1. Python脚本打包2. 将打包好的Python脚本放入服务器3. 在服务器上设置其定时执行 1. Python脚本打包 首先,下载pyinstaller 键盘winR打开终端,输入命令:pip install pyinstaller,…

AI大模型,普通人如何抓到红利?AI+产品经理还有哪些机会

前言 随着人工智能技术的飞速发展,AI大模型正逐渐渗透到我们的工作和生活中,为普通人带来了前所未有的便利和机遇。然而,如何有效地抓住这些红利,让AI大模型为我们所用,成为了许多人关注的焦点。 对于普通人而言&…

GIGE 协议摘录 —— 引导寄存器(四)

系列文章目录 GIGE 学习笔记 GIGE 协议摘录 —— 设备发现(一) GIGE 协议摘录 —— GVCP 协议(二) GIGE 协议摘录 —— GVSP 协议(三) GIGE 协议摘录 —— 引导寄存器(四) GIGE 协议…

计算机视觉与模式识别实验2-2 SIFT特征提取与匹配

文章目录 🧡🧡实验流程🧡🧡SIFT算法原理总结:实现SIFT特征检测和匹配通过RANSAC 实现图片拼接更换其他图片再次测试效果(依次进行SIFT特征提取、RANSAC 拼接) 🧡🧡全部代…

基于Texture2D 实现Unity 截屏功能

实现 截屏 Texture2D texture new Texture2D(Screen.width, Screen.height, TextureFormat.RGB24, false); texture.ReadPixels(new Rect(0, 0, Screen.width, Screen.height), 0, 0); texture.Apply(); 存储 byte[] array ImageConversion.EncodeToPNG(texture); if (!…

MATLAB format

在MATLAB中,format 是一个函数,用于控制命令窗口中数值的显示格式。这个函数可以设置数值的精度、显示的位数等。以下是一些常用的 format 命令: format long:以默认的长格式显示数值,通常显示15位有效数字。format s…

揭秘!如何从精益生产转向智能制造

企业在“工业4.0、智能制造、互联网”等概念满天飞的环境下迷失了方向,不知该如何下手,盲目跟风。 君不见,很多企业在“工业4.0、智能制造、互联网”等概念满天飞的环境下迷失了方向,不知该如何下手,盲目跟风&#xf…

完美落地的自动化测试框架(pytest):智能生成?业务依赖?动态替换?报告构建?你来,这儿有!

前言 随着软件测试行业的快速发展,去测试化、全员测开化的趋势,技术测试已成为确保软件质量不可或缺的一环。 但对于许多没有代码基础或缺乏系统性自动化知识的测试人员来说,如何入手并实现高质量的自动化测试成为了一个挑战。 为此&#xff…