【数据结构】链式二叉树详解

news2024/11/23 0:55:35

在这里插入图片描述
个人主页~
链式二叉树基本内容~


链式二叉树详解

  • 1、通过前序遍历的数组来构建二叉树
  • 2、二叉树的销毁
  • 3、二叉树节点个数
  • 4、二叉树叶子节点个数
  • 5、二叉树第k层节点个数
  • 6、二叉树查找
  • 7、前序遍历
  • 8、中序遍历
  • 9、后序遍历
  • 10、层序遍历与检查二叉树是否为完全二叉树
    • Queue.h
    • Queue.c
    • 层序遍历代码
    • 完全二叉树判断

整个链式二叉树以递归定义为主,需要详细了解递归的相关概念:递归定义在第六条
最需要记住的是:递归定义中的return是退出到上一级,而不是整个程序

1、通过前序遍历的数组来构建二叉树

BTNode* BinaryTreeCreate(BTDataType* a,int n, int* pi)
{
    if (*pi >= n || a[*pi] == '#')
    { 
   	    // 如果到达数组末尾或遇到#,则返回NULL  
        (*pi)++;//移动到下一个数据
        return NULL;
    }
    BTNode* node = BuyNode(a[*pi]);
    (*pi)++; // 移动到下一个数据

    node->left = BinaryTreeCreate(a, n, pi); // 递归创建左子树  
    node->right = BinaryTreeCreate(a, n, pi); // 递归创建右子树  

    return node;
}

建树过程(部分过程省略):
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

2、二叉树的销毁

二叉树销毁是不能够从第一层开始销毁的,这样我们不能销毁所有的节点,从叶节点开始销毁,递归释放,才能销毁二叉树所有节点

void BinaryTreeDestory(BTNode* root)
{
	if (root == NULL)
		return;
	BinaryTreeDestory(root->left);//找到底层左节点
	BinaryTreeDestory(root->right);//找完左节点找右节点
	free(root);
}

在这里插入图片描述
找到D的左子结点,是#返回,再找D的右节点,是#返回,然后释放掉D节点,此时B的root->left结束,进行root->right,以此类推,这样会从最底下的叶节点开始将所有节点释放

3、二叉树节点个数

int BinaryTreeSize(BTNode* root)
{
	//return root == NULL ? 0 : BinaryTreeSize(root->left) + BinaryTreeSize(root->right) + 1;
	if (root == NULL)
		return 0;
	return BinaryTreeSize(root->left) + BinaryTreeSize(root->right) + 1;
}

两种表达方式,一种是普通表达,另一种是三目表达
如果当前节点为空,返回0,如果左右子节点都遍历完了,将结果+1返回
在这里插入图片描述
递归走到D的左子结点,返回到D,return 0
右子节点,返回到D,return 0
函数走完返回到B,return 0+0+1
以此类推

4、二叉树叶子节点个数

int BinaryTreeLeafSize(BTNode* root)
{
	if (root == NULL)
		return 0;
	if (root->left == NULL && root->right == NULL)
		return 1;
	return BinaryTreeLeafSize(root->left) + BinaryTreeLeafSize(root->right);
}

当前节点为空时,返回0
当前节点不为空且左右子节点都为空时,说明该节点为叶节点,返回1
将左子树的叶节点与右子树的叶节点相加就是二叉树总共的叶子结点个数
在这里插入图片描述
A走到B,B走到D,D的左右节点都为空,D是叶子结点,返回1,返回到B
再走E的左子结点,为空,返回0,走E节点,E节点的左右子节点为空,为叶子节点返回1,以此类推

5、二叉树第k层节点个数

int BinaryTreeLevelKSize(BTNode* root, int k)
{
	assert(k > 0);
	if (root == NULL)
		return 0;
	if (k == 1)
		return 1;
	return BinaryTreeLevelKSize(root->left, k - 1) + BinaryTreeLevelKSize(root->right, k - 1);
}

当节点为0时,返回0
当k为1时,只有根节点,返回1
每次递归会使k减1,到第k层时k=1,然后就开始返回,这样递归的定义可以保证第k层的所有个数都可以算到
在这里插入图片描述
当我们想要求第三层的节点个数时,我们找到BC两棵子树,此时对于BC来说,它们需要找到它第二层的节点个数,再向下递归,此时k==1,将它们不为空的节点返回1

6、二叉树查找

BTNode* BinaryTreeFind(BTNode* root, BTDataType x)
{
	if (root == NULL)
		return NULL;
	if (root->data = x)
		return root;
	BTNode* ret1 = BinaryTreeFind(root->left, x);

	if (ret1)
		return ret1;//不为空就返回
		
	BTNode* ret2 = BinaryTreeFind(root->right, x);

	if (ret2)
		return ret2;//不为空就返回

	return NULL;
}

当节点为空时,返回空
当节点数据为想要查找的数据时,返回该节点指针
递归调用,当左子树中存在这个数时,ret1不为空,返回的就是那个值,右子树同上,都没有就返回空
在这里插入图片描述

7、前序遍历

void BinaryTreePrevOrder(BTNode* root)
{
	if (root == NULL)
	{
		printf("N ");
		return;
	}
	printf("%c ", root->data);
	BinaryTreePrevOrder(root->left);
	BinaryTreePrevOrder(root->right);
}

前序遍历的顺序:根节点->左子树->右子树
在这里插入图片描述
先将根节点A打印之后,递归到左子结点B,打印B,递归到B的左子结点D,打印D,D的左子节点为空,打印N,查看右子节点,也为空,打印N,返回到B,查看右子结点,打印E,以此类推

8、中序遍历

void BinaryTreeInOrder(BTNode* root)
{
	if (root == NULL)
	{
		printf("N ");
		return;
	}
	BinaryTreeInOrder(root->left);
	printf("%c ", root->data);
	BinaryTreeInOrder(root->right);
}

中序遍历顺序:左子树->根->右子树
在这里插入图片描述
A到B,B到D,D到最底的左子节点,为空,打印N,再打印根D,右子节点,为空,打印N,然后回到B看E,以此类推

9、后序遍历

void BinaryTreePostOrder(BTNode* root)
{
	if (root == NULL)
	{
		printf("N ");
		return;
	}
	BinaryTreeInOrder(root->left);
	BinaryTreeInOrder(root->right);
	printf("%c ", root->data);
}

后序遍历顺序:左子树->右子树->根
在这里插入图片描述
A到B,B到D,D到最底的左子节点,为空,打印N,看D的右子节点,为空,打印N,最后打印D
去到B的右子节点E,以此类推

10、层序遍历与检查二叉树是否为完全二叉树

层序遍历即一层一层的遍历,从第一层开始,此时我们需要一个队列,因为队列可以实现先入先出,并且可以存储数据

Queue.h

#pragma once

#include <stdio.h>
#include <stdlib.h>
#include <assert.h>


typedef struct BinaryTreeNode* QDataType;

// 链式结构:表示队列
typedef struct QListNode
{
	struct QListNode* pNext;
	QDataType data;
}QNode;
// 队列的结构
typedef struct Queue
{
	QNode* front;
	QNode* rear;
	int size;
}Queue;
// 初始化队列
void QueueInit(Queue* q);
// 队尾入队列
void QueuePush(Queue* q, QDataType node);
// 队头出队列
void QueuePop(Queue* q);
// 获取队列头部元素
QDataType QueueFront(Queue* q);
// 检测队列是否为空,如果为空返回非零结果,如果非空返回0 
int QueueEmpty(Queue* q);
// 销毁队列
void QueueDestroy(Queue* q);

Queue.c

队列我就不添加注释了,前边的文章-栈和队列中都有,可以自行翻阅

#include "Queue.h"


void QueueInit(Queue* q)
{
	assert(q);
	q->front = q->rear = NULL;
	q->size = 0;
}

void QueuePush(Queue* pq, QDataType x)
{
	assert(pq);

	QNode* newnode = (QNode*)malloc(sizeof(QNode));
	if (newnode == NULL)
	{
		perror("malloc fail\n");
		return;
	}
	newnode->data = x;
	newnode->pNext = NULL;
	if (pq->rear == NULL)
	{
		assert(pq->front == NULL);

		pq->front = pq->rear = newnode;
	}
	else
	{
		pq->rear->pNext = newnode;
		pq->rear = newnode;
	}
	pq->size++;
}

void QueuePop(Queue* q)
{
	assert(q);
	assert(!QueueEmpty(q));
	if (q->front->pNext == NULL)
	{
		free(q->front);
		q->front = q->rear = NULL;
	}
	else
	{
		QNode* next = q->front->pNext;
		free(q->front);
		q->front = next;
	}
	q->size--;
}

QDataType QueueFront(Queue* q)
{
	assert(q);
	assert(!QueueEmpty(q));
	if (q->front == NULL)
	{
		return NULL;
	}
	return q->front->data;
}

int QueueEmpty(Queue* q)
{
	assert(q);

	return q->size == 0;
}

void QueueDestroy(Queue* q)
{
	assert(q);
	QNode* pur = q->front;
	while (pur)
	{
		QNode* next = pur->pNext;
		free(pur);
		pur = next;
	}
	q->front = q->rear = NULL;
	q->size = 0;
}

层序遍历代码

void BinaryTreeLevelOrder(BTNode* root)
{
	Queue q;
	QueueInit(&q);

	if (root)
		QueuePush(&q, root);//把根节点作为队列的队头

	while (!QueueEmpty(&q))
	{
		BTNode* front = QueueFront(&q);
		//将要出队的队头数据存储一下
		QueuePop(&q);//将队头弹出

		printf("%c ", front->data);//打印被存储的队头数据

		if (front->left)
			QueuePush(&q, front->left);

		if (front->right)
			QueuePush(&q, front->right);
	}//从队头开始检查左右子节点,若不为空则添加入队
	printf("\n");
	QueueDestroy(&q);
}

在这里插入图片描述

完全二叉树判断

int BinaryTreeComplete(BTNode* root)
{
	Queue q;
	QueueInit(&q);

	if (root)
		QueuePush(&q, root);

	while (!QueueEmpty(&q))
	{
		BTNode* front = QueueFront(&q);
		QueuePop(&q);
//到此的解释如上层序遍历同

		if (front == NULL)
			break;
// 遇到空就跳出,只要有空,后面也是空的话,那就是完全二叉树,如果后面不都为空,那么就不是
		QueuePush(&q, front->left);
		QueuePush(&q, front->right);
		//将空之前的数据全部入队
	}

	// 检查后面的节点有没有非空

	while (!QueueEmpty(&q))
	{
		BTNode* front = QueueFront(&q);
		QueuePop(&q);

		if (front)
		{
			QueueDestroy(&q);
			return 0;
		}
	}

	QueueDestroy(&q);
	return 1;
}

在这里插入图片描述


今日分享完毕,瑞思拜~
我的博客即将同步至腾讯云开发者社区,邀请大家一同入驻:https://cloud.tencent.com/developer/support-plan?invite_code=uh9vxxb2uwoi

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1795085.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

(echarts)图上数值显示单位

&#xff08;echarts&#xff09;图上数值显示单位 series: [{name: 比例,type: bar,...label: {show: true,position: top,formatter: (params) > params.value % //图上数值显示格式},tooltip: { //鼠标移入图上数值显示格式valueFormatter: function(value) {return val…

电源设计01

嵌入式电源设计 电池容量的计算电路充电时的选择&#xff1a; 科普硬件知识&#xff0c;写写关于电路板电源的事情。各类电源模块实物但为什么硬件工程师又必须要了解电源并且在板内自己设计电源呢&#xff1f;首先是DCDC的降压芯片下面推荐几个升压芯片&#xff1a;LDO 电池容…

Unity 自定义编辑器根据枚举值显示变量

public class Test : MonoBehaviour {[HideInInspector][Header("数量")][SerializeField]public int num;[Header("分布类型")][SerializeField]public DistributionType distType;[HideInInspector][Header("位置")][SerializeField]public Li…

数据结构 | 超详细讲解七大排序(C语言实现,含动图,多方法!)

目录 ​编辑 排序的概念 常见排序算法 ​编辑 1.冒泡排序 &#x1f379;图解 &#x1f973;代码实现 &#x1f914;时间复杂度 2.插入排序 &#x1f379;图解 &#x1f334;深度剖析 &#x1f34e;代码思路 &#x1f973;代码实现 &#x1f914;时间复杂度 3.希尔…

【深度学习-第6篇】使用python快速实现CNN多变量回归预测(使用pytorch框架)

上一篇我们讲了使用CNN进行分类的python代码&#xff1a; Mr.看海&#xff1a;【深度学习-第5篇】使用Python快速实现CNN分类&#xff08;模式识别&#xff09;任务&#xff0c;含一维、二维、三维数据演示案例&#xff08;使用pytorch框架&#xff09; 这一篇我们讲CNN的多变…

【Linux】磁盘文件和软硬链接

上篇博客我们说了内存级文件&#xff0c;就是文件加载到内存中它的一些操作。那么不可能所有文件文件都要加载到内存中&#xff0c;大部分文件都要存在与一种可以永久性存储数据的硬件中&#xff0c;就是我们要说的磁盘。现在的笔记本电脑用的都是硬盘&#xff0c;你可以理解为…

C语言 io-文件拷贝

#include <stdio.h> int main(int argc, const char *argv[]) {//1文件拷贝到2文件FILE* fileAfopen(argv[1],"r");FILE* fileBfopen(argv[2],"w");if(NULLfileA){perror("fopen");return -1;}if(NULLfileB){perror("fopen");re…

【Vue】scoped解决样式冲突

默认情况下写在组件中的样式会 全局生效 → 因此很容易造成多个组件之间的样式冲突问题。 全局样式: 默认组件中的样式会作用到全局&#xff0c;任何一个组件中都会受到此样式的影响 局部样式: 可以给组件加上scoped 属性,可以让样式只作用于当前组件 一、代码示例 BaseOne…

MYSQL ORDER BY

在MySQL中&#xff0c;默认情况下&#xff0c;升序排序会将NULL值放在前面&#xff0c;因为在排序过程中&#xff0c;NULL会被视为最小值。然而&#xff0c;有时会要求在升序排序中需要将NULL值放在最后。 例如根据日期升序时就会出现这种问题 方案一&#xff1a; SELECT sor…

Docker成功启动Rabbitmq却访问不了管理页面问题解决

目录 启动步骤&#xff1a; 无法访问问题总结&#xff1a; 启动步骤&#xff1a; 拉取镜像&#xff1a; docker pull rabbitmq 运行&#xff1a; docker run -d -p 5672:5672 -p 15672:15672 --name rabbitmq rabbitmq进入容器&#xff1a; docker exec -it 容器id /bin/…

2024.6.9周报

目录 摘要 ABSTRACT 一、文献阅读 1、相关信息 2、摘要 3、文献解读 1、Introduction 2、文章主要贡献 3、模型架构 4、实验 4、结论 二、代码实现 总结 摘要 本周我阅读了一篇题目为《Unlocking the Potential of Transformers in Time Series Forecasting with …

流水线建构apk、abb实战(二)

gradlew 命令生成apk、aab包 其实构建应用程序包就几个命令&#xff1a; ### 生成AAB&#xff1a; gradlew bundleRelease #输出到[project]/build/outputs/bundle/release/下 gradlew bundleDebug### 生成APK&#xff1a; gradlew assembleRelease gradlew assembleDebug###…

Linux系统之fc命令的基本使用

Linux系统之fc命令的基本使用 一、fc命令介绍1.1 fc命令简介1.2 fc命令用途 二、fc命令的帮助信息2.1 fc的man帮助2.2 fc命令的使用帮助2.3 fc命令与history命令区别 三、fc命令的基本使用3.1 显示最近执行的命令3.2 指定序号查询历史命令3.3 使用vim编辑第n条历史命令3.4 替换…

openh264 自适应量化功能源码分析

openh264 OpenH264是一个开源的H.264/AVC视频编解码器&#xff0c;由Cisco公司发起并贡献了最初的代码基础。它提供了一个用于视频编码和解码的库&#xff0c;支持H.264视频压缩标准&#xff0c;广泛应用于视频会议、流媒体和视频存储等领域。OpenH264是实现H.264编解码功能的…

关于vue2 antd 碰到的问题总结下

1.关于vue2 antd 视图更新问题 1.一种强制更新 Vue2是通过用Object…defineProperty来设置数据的getter和setter实现对数据和以及视图改变的监听的。对于数组和对象这种引用类型来说&#xff0c;getter和setter无法检测到它们内部的变化。用这种 this.$set(this.form, "…

T-Rex2: Towards Generic Object Detection via Text-Visual Prompt Synergy论文解读

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、引言二、文献综述1. Text-prompted Object Detection2. Visual-prompted Object Detection3. Interactive Object Detection 三、模型方法1. Visual-Text P…

在vscode 中使用npm的问题

当我装了 npm和nodejs后 跑项目在 文件中cmd的话可以直接运行但是在 vscode 中运行的时候就会报一下错误 解决方法就是在 vscode 中吧 power shell换成cmd 来运行就行了

JVM相关:Java内存区域

Java 虚拟机&#xff08;JVM)在执行 Java 程序的过程中会把它管理的内存划分成若干个不同的数据区域。 Java运行时数据区域是指Java虚拟机&#xff08;JVM&#xff09;在执行Java程序时&#xff0c;为了管理内存而划分的几个不同作用域。这些区域各自承担特定的任务&#xff0c…

知攻善防应急

知攻善防应急靶场一 小李在值守的过程中&#xff0c;发现有 CPU 占用飙升&#xff0c;出于胆子小&#xff0c;就立刻将服务器关机&#xff0c;并找你帮他分析&#xff0c;这是他的服务器系统&#xff0c;请你找出以下内容&#xff0c;并作为通关条件&#xff1a; 1.攻击者的 …

今日增长工具精选| 8个SaaS出海必备运营工具

一、SurveyMonkey 是一个灵活、方便、经济实惠的在线调查工具&#xff0c;可以通过自行设计定制化问卷&#xff0c;开展消费者调研&#xff0c;收集第一手数据&#xff0c;获取用户反馈。 客户涵盖财富100强公司以及其他不同规模和类型的组织&#xff0c;如公司、学术研究机构…