使用Python中的sklearn中自带的决策树分类器DecisionTreeClassifier
import sklearn
clf = sklearn.tree.DecisionTreeClassifier(criterion='entropy')
sklearn中只实现了ID3与CART决策树,所以我们暂时只能使用这两种决策树,在构造DecisionTreeClassifier类的时候,其中一个参数criterion,是设置标准,这里我们可以设置分类树采用那种算法进行构造,我这里使用的是ID3分类树(entropy),当然我们也可以使用CART分类树(ginin).
- entropy: 基于信息熵,也就是 ID3 算法,实际结果与 C4.5 相差不大;
- gini:默认参数,基于基尼系数。CART 算法是基于基尼系数做属性划分的,所以 criterion=gini 时,实际上执行的是 CART 算法。
应用流程
数据探索
python使用pandas
- 使用 info() 了解数据表的基本情况:行数、列数、每列的数据类型、数据完整度;
- 使用 describe() 了解数据表的统计情况:总数、平均值、标准差、最小值、最大值等;
- 使用 describe(include=[‘O’]) 查看字符串类型(非数字)的整体情况;
- 使用 head 查看前几行数据(默认是前 5 行);
- 使用 tail 查看后几行数据(默认是最后 5 行)。
需要使用到两个文件:这两个为泰坦尼克号的生存数据集
train.csvtest.csv
import pandas as pd
train_data = pd.read_csv('train.csv')
test_data = pd.read_csv('test.csv')
# 数据探索
# print(train_data.info())
# print('-'*30)
# print(train_data.describe())
# print('-'*30)
# # print(train_data.describe(include=['0']))
# # print('-'*30)
# print(train_data.head())
# print('-'*30)
# print(train_data.tail())
数据清洗
我们简单探索为响应数据发现,Age,Fare、Cabin这三个字段的数据有所缺失。其中Age为年龄字段,是数值类型,我们可以通过平均值帮助他进行补齐;Fare为船票价格,是数值类型,我们也可以通过其他人购买的船票平均值给她进行补齐。
数据可视化展现
使用Graphviz进行数据可视化展现
全部完整代码
import pandas as pd
import numpy as np
from sklearn.feature_extraction import DictVectorizer
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import cross_val_score
from sklearn import tree
import graphviz
# 数据加载
train_data = pd.read_csv('D:/workspace/study/python/Titanic_Data/train.csv')
test_data = pd.read_csv('D:/workspace/study/python/Titanic_Data/test.csv')
# 数据探索
print(train_data.info())
print('-'*30)
print(train_data.describe())
print('-'*30)
print(train_data.describe(include=['O']))
print('-'*30)
print(train_data.head())
print('-'*30)
print(train_data.tail())
# 数据清洗
# 使用平均年龄来填充年龄中的 nan 值
train_data['Age'].fillna(train_data['Age'].mean(), inplace=True)
test_data['Age'].fillna(test_data['Age'].mean(), inplace=True)
# 使用票价的均值填充票价中的 nan 值
train_data['Fare'].fillna(train_data['Fare'].mean(), inplace=True)
test_data['Fare'].fillna(test_data['Fare'].mean(), inplace=True)
# 使用登录最多的港口来填充登录港口的 nan 值
train_data['Embarked'].fillna('S', inplace=True)
test_data['Embarked'].fillna('S', inplace=True)
# 特征选择
features = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked']
train_features = train_data[features]
train_labels = train_data['Survived']
test_features = test_data[features]
dvec = DictVectorizer(sparse=False)
train_features = dvec.fit_transform(train_features.to_dict(orient='record'))
print(dvec.feature_names_)
# 决策树模型
# 构造 ID3 决策树
clf = DecisionTreeClassifier(criterion='entropy')
# 决策树训练
clf.fit(train_features, train_labels)
# 模型预测 & 评估
test_features=dvec.transform(test_features.to_dict(orient='record'))
# 决策树预测
pred_labels = clf.predict(test_features)
# 决策树准确率
acc_decision_tree = round(clf.score(train_features, train_labels), 6)
print(u'score 准确率为 %.4lf' % acc_decision_tree)
# K 折交叉验证统计决策树准确率
print(u'cross_val_score 准确率为 %.4lf' % np.mean(cross_val_score(clf, train_features, train_labels, cv=10)))
# 决策树可视化
dot_data = tree.export_graphviz(clf, out_file=None)
graph = graphviz.Source(dot_data)
graph.view()