使用streamlit记录

news2025/1/11 3:03:28

官方网址:https://docs.streamlit.io/
官方网址:https://discuss.streamlit.io/t/streamlit-components-community-tracker/4634
官方网址:https://github.com/streamlit/streamlit
第三方插件网址:https://github.com/arnaudmiribel/streamlit-extras
第三方插件网址:https://github.com/joy13975/streamlit-nested-layout
第三方插件网址:https://github.com/Schluca/streamlit_tree_select
第三方插件网址:https://github.com/blackary/st_pages
第三方插件网址:https://github.com/andfanilo/streamlit-echarts
第三方插件网址:https://github.com/victoryhb/streamlit-option-menu
系统环境:win10
py版本:3.7
安装指令pip install streamlit
安装后测试运行,提示ImportError: cannot import name 'builder' from 'google.protobuf.internal' (D:\Program Files\Python\Python37\lib\site-packages\google\protobuf\internal\__init__.py)
经查说需要更新protobuf来解决。或者将streamlit退到1.13。
所以我最终使用的版本是:
streamlit : 1.13
protobuf : 3.15.6
20230109 由于需要清除缓存功能,所以更改了使用版本
streamlit : 1.15
protobuf : 3.20.0

初次运行

然后第一次运行时候,会提示需要输入一个邮箱来确定使用。
在这里插入图片描述
启动程序后
在这里插入图片描述
可以通过pycharm修改代码,然后刷新页面来查看新的页面效果。
在这里插入图片描述
下面按照需求,在官方文档中找到对应的功能模块,开发调试。

最终效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

样例代码

主页

主要技术采用st_pages作为分页导航设置

import streamlit as st
from pkg.st_pages.src.st_pages import Page, show_pages, add_page_title
# Optional -- adds the title and icon to the current page
add_page_title()

body = '''
这是主页,暂时没有想好写什么,所以先随便写点东西来填充一下
'''
st.markdown(body, unsafe_allow_html=False)

# Specify what pages should be shown in the sidebar, and what their titles and icons
# should be
# https://raw.githubusercontent.com/omnidan/node-emoji/master/lib/emoji.json
show_pages(
    [
        Page("main_app.py", "主页", "🏠"),
        Page("public_pages/page_1.py", "微观数据", ":rabbit2:"),
        Page("public_pages/main_page.py", "宏观数据", ":cow2:"),
        # Page("public_pages/page_2.py", "数据覆盖度", ":water_buffalo:"),
    ]
)
st_pages使用注意事项

请求json问题
在使用https://github.com/blackary/st_pages这个包时候,不建议直接安装。因为这个包的stc/st_pages/__init__.py中有一个功能如下:

@st.experimental_singleton
def get_icons() -> dict[str, str]:
    url = "https://raw.githubusercontent.com/omnidan/node-emoji/master/lib/emoji.json"
    return requests.get(url).json()

这里是请求网页上的json,但是在离线环境或者国内的环境就经常请求不到。这里是建议将那个json下载下来,然后放到项目中,然后将代码改成如下:

@st.experimental_singleton
def get_icons() -> dict[str, str]:
    # url = "https://raw.githubusercontent.com/omnidan/node-emoji/master/lib/emoji.json"
    # return requests.get(url).json()
    with open('./pkg/templates/emoji.json', 'r', encoding="utf8") as f:
        js_data = json.load(f)
    return js_data

这样回避访问网络问题。

菜单刷新问题
在使用2级菜单的时候,由于本身该功能包是采用重新写css的方式(li:nth-child)来实现菜单功能的,所以需要所有的次级页面都添加add_page_title()或者add_indentation()来实现菜单层级功能。

主页修改-20230118

原st_pages不太满足需求,故参考st_pages重新写了份类似的功能包streamlit_pages。
main_app.py:导航页面

from pkg.streamlit_pages import add_indentation, Page, Menu, overwrite_pages

from streamlit.source_util import _on_pages_changed, get_pages

pages = [
    Page("main_app.py", "主页", "🏠"),
    Menu(name="微观数据", icon=":horse:"),
    # Menu(name="二级菜单", icon=":horse:", father="微观数据"),
    Page("public_pages/page_1.py", "微观数据", ":rabbit2:", father="微观数据"),
    Menu(name="宏观数据", icon=":horse:"),
    Page("public_pages/page_2.py", "重点指标地区覆盖度", ":rabbit2:", father="宏观数据"),
    Page("public_pages/main_page.py", "重点指标数据查询", ":cow2:", father="宏观数据"),
    Page("public_pages/page_test.py", "测试页面", ":cow2:"),
]

overwrite_pages(pages)
add_indentation()

body = '''
这是主页,暂时没有想好写什么,所以先随便写点东西来填充一下
'''
st.markdown(body, unsafe_allow_html=False)

with st.container():
    with st.expander("检查页面信息-测试开发用"):
        for page in pages:
            st.write(page.to_dict())

streamlit_pages.init.py:page程序包

# -*- coding:utf-8 -*-
# author: cyz
# time: 2023/1/12 14:02
import os, sys

sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..'))
# os.chdir(os.path.dirname(os.path.abspath(__file__)))

from dataclasses import dataclass
from pathlib import Path
import json
from typing import Union, Dict, Tuple, List

from streamlit.source_util import _on_pages_changed, get_pages
from streamlit.commands.page_config import get_random_emoji
from streamlit.util import calc_md5
import streamlit as st

try:
    from streamlit import _gather_metrics  # type: ignore
except ImportError:
    def _gather_metrics(name, func, *args, **kwargs):
        return func

try:
    from streamlit.source_util import page_icon_and_name
except ImportError:
    from streamlit.source_util import page_name_and_icon  # type: ignore

    def page_icon_and_name(script_path: Path) -> Tuple[str, str]:
        icon, name = page_name_and_icon(script_path)
        return name, icon

@dataclass
class Page:
    """
    Utility class for working with pages

    Parameters
    ----------
    path: str
        The path to the page
    name: str (optional)
        The name of the page. If not provided, the name will be inferred from
        the path
    icon: str (optional)
        The icon of the page. If not provided, the icon will be inferred from
        the path
    """

    path: str
    name: Union[str, None] = None
    icon: Union[str, None] = None
    is_menu: bool = False
    father: Union[str, None] = None

    @property
    def page_path(self) -> Path:
        return Path(str(self.path))

    @property
    def page_name(self) -> str:
        standard_name = page_icon_and_name(self.page_path)[1]
        standard_name = standard_name.replace("_", " ").title()
        if self.name is None:
            return standard_name
        return self.name

    @property
    def page_icon(self) -> str:
        standard_icon = page_icon_and_name(self.page_path)[0]
        icon = self.icon or standard_icon or ""
        return translate_icon(icon)

    @property
    def page_hash(self) -> str:
        if self.is_menu:
            return calc_md5(f"{self.page_path}_{self.page_name}")
        return calc_md5(str(self.page_path))

    def to_dict(self) -> Dict[str, Union[str , bool]]:
        return {
            "page_script_hash": self.page_hash,
            "page_name": self.page_name,
            "icon": self.page_icon,
            "script_path": str(self.page_path),
            "is_menu": self.is_menu,
            "father": self.father,
        }

    @classmethod
    def from_dict(cls, page_dict: Dict[str, Union[str , bool]]):
        return cls(
            path=str(page_dict["script_path"]),
            name=str(page_dict["page_name"]),
            icon=str(page_dict["icon"]),
            is_menu=bool(page_dict["is_menu"]),
            father=str(page_dict["father"]),
        )


class Menu(Page):
    def __init__(self, name: str, icon: Union[str, None] = None, father=None):
        super().__init__(path="", name=name, icon=icon, is_menu=True, father=father)

# 原本的shou_pages,感觉这个名字更加切合实际
def _overwrite_pages(pages: List[Page]):
    """
    Given a list of Page objects, overwrite whatever pages are currently being
    shown in the sidebar, and overwrite them with this new set of pages.

    NOTE: This changes the list of pages globally, not just for the current user, so
    it is not appropriate for dymaically changing the list of pages.
    """
    current_pages: Dict[str, Dict[str, Union[str , bool]]] = get_pages("")  # type: ignore
    if set(current_pages.keys()) == set(p.page_hash for p in pages):
        return

    try:
        default_page = [p.path for p in pages if p.path][0]
    except IndexError:
        raise ValueError("Must pass at least one page to show_pages")

    for page in pages:
        if page.is_menu:
            page.path = default_page

    current_pages.clear()
    for page in pages:
        current_pages[page.page_hash] = page.to_dict()

    _on_pages_changed.send()

overwrite_pages = _gather_metrics("streamlit_pages.overwrite_pages", _overwrite_pages)

@st.experimental_singleton
def get_icons() -> Dict[str, str]:
    # url = "https://raw.githubusercontent.com/omnidan/node-emoji/master/lib/emoji.json"
    # return requests.get(url).json()
    emoji_path = os.path.dirname(os.path.abspath(__file__)) +'/emoji.json'
    with open(emoji_path, 'r', encoding="utf8") as f:
        js_data = json.load(f)
    return js_data

# @st.experimental_singleton
def get_css() -> str:
    # url = "https://github.com/Socvest/streamlit-on-Hover-tabs/blob/main/st_on_hover_tabs/style.css"
    emoji_path = os.path.dirname(os.path.abspath(__file__)) +'/style.css'
    with open(emoji_path, 'r', encoding="utf8") as f:
        css_file = f.read()
    return css_file

def translate_icon(icon: str) -> str:
    """
    If you pass a name of an icon, like :dog:, translate it into the
    corresponding unicode character
    """
    icons = get_icons()
    if icon == "random":
        icon = get_random_emoji()
    elif icon.startswith(":") and icon.endswith(":"):
        icon = icon[1:-1]
        if icon in icons:
            return icons[icon]
    return icon

def _get_indentation_code(style:str="st-page") -> str:
    if style == "st-page":
        styling = '''
        div[data-testid="stSidebarNav"] {
        /* background-color:rgb(0, 0, 0); */
        /*color:rgb(255, 255, 255);*/
        /*padding-top: 20px;*/
        }
        '''
        current_pages = get_pages("")

        menu_info = {}

        for idx, val in enumerate(current_pages.values()):
            if val.get("is_menu"):
                if val.get("father") and (val.get("father") in menu_info.keys()):
                    menu_margin_left = menu_info[val.get("father")] + 1.5
                else:
                    menu_margin_left = 1

                menu_info[val.get("page_name")] = menu_margin_left
                styling += f"""
                        li:nth-child({idx + 1}) a {{
                            pointer-events: none; /* Disable clicking on section header */
                            margin-left: {menu_margin_left}rem;
                        }}
                    """

            elif val.get("father") and (val.get("father") in menu_info.keys()):
                # Unless specifically unnested, indent all pages that aren't section headers
                menu_margin_left = menu_info[val.get("father")] + 0.5
                styling += f"""
                        li:nth-child({idx + 1}) span:nth-child(1) {{
                            margin-left: {menu_margin_left}rem;
                        }}
                    """

        styling += get_css()
    else:
        styling = '''
        div[data-testid="stSidebarNav"] {
        display: None;
        }
        '''


    styling = f"""
        <style>
            {styling}
        </style>
    """

    return styling

def _add_indentation(style:str="st-page"):
    """
    For an app that has set one or more "sections", this will add indentation
    to the files "within" a section, and make the sections itself
    unclickable. Makes the sidebar look like something like this:

    - page 1
    - section 1
        - page 2
        - page 3
    - section 2
        - page 4
    """

    styling = _get_indentation_code(style)

    st.write(
        styling,
        unsafe_allow_html=True,
    )
    # st.markdown('<style>' + get_css() + '</style>', unsafe_allow_html=True)
add_indentation = _gather_metrics("streamlit_pages.add_indentation", _add_indentation)

style.css:我有部分注释掉,跟原版的有些不太相同。

section[data-testid='stSidebar'] {
    /*background-color: #111;*/
    min-width:unset !important;
    width: unset !important;
    flex-shrink: unset !important;
}

button[kind="header"] {
    background-color: transparent;
    color:rgb(180, 167, 141)
}

@media(hover){
    /* header element to be removed */
    header[data-testid="stHeader"] {
        display:none;
    }

    /* The navigation menu specs and size */
    section[data-testid='stSidebar'] > div {
        /*height: 100%;*/
        width: 95px;
        position: relative;
        z-index: 1;
        top: 0;
        left: 0;
        /*background-color: #111;*/
        overflow-x: hidden;
        transition: 0.5s ease;
        /*padding-top: 60px;*/
        white-space: nowrap;
        /*color:rgb(255, 255, 255)*/
    }

    /* The navigation menu open and close on hover and size */
    /* section[data-testid='stSidebar'] > div {
    height: 100%;
    width: 75px; /* Put some width to hover on. */
    /* }
    /* ON HOVER */
    section[data-testid='stSidebar'] > div:hover{
    width: 300px;
    }

    /* The button on the streamlit navigation menu - hidden */
    button[kind="header"] {
        display: none;
    }
}

@media(max-width: 272px){

    section[data-testid='stSidebar'] > div {
        width:15rem;
    }
}

微观数据页面

这个页面主要是采用直接连接外页面使用的。所以本身代码量不高。

import streamlit as st
import streamlit.components.v1 as components

st.set_page_config(layout="wide", page_title="微观数据")
# https://docs.streamlit.io/library/components/components-api
components.iframe("http://192.168.1.1:5000/", width=1680, height=760, scrolling=True)

宏观数据页面

基础设置

import streamlit as st
import streamlit_nested_layout  # 布局必须导入
from streamlit_tree_select import tree_select  # 树状选择
from streamlit_echarts import st_pyecharts  # 画图

from datetime import datetime
import pandas as pd
from pkg.streamlit_pages import add_indentation  # 刷新菜单栏使用

# https://docs.streamlit.io/library/api-reference/utilities/st.set_page_config
st.set_page_config(layout="wide", page_title="宏观数据")
# https://docs.streamlit.io/library/advanced-features/session-state
if 'macro_index_data' not in st.session_state:  # 数据状态,就是共享的内存,不会随着代码重运行而导致数据重置
    st.session_state.macro_index_data = pd.DataFrame()
add_indentation()

# 页面布局
# https://docs.streamlit.io/library/api-reference/layout/st.columns
col1, col2 = st.columns((4, 1))  # 将页面按照4:1宽度分割成2个区域
with col1:
    select_expander=st.expander("详细选项")
    expander_col1, expander_col2, expander_col3, expander_col4 = select_expander.columns((1, 1, 1, 1))
数据缓存
# 缓存功能区
# https://docs.streamlit.io/library/api-reference/performance/st.cache
@st.experimental_singleton()
def aaaaaa():
    # 请求df数据api
    md = MacroData()
    return md
md = aaaaaa()
dp = DrawPic()

@st.experimental_memo
def get_index_label():
    return md.get_index_label()
按键触发查询数据

查询数据功能

def get_macro_index_data(data):
    source = md.get_macro_index_data(data)
    source = source.astype(object).where(pd.notnull(source), None)
    return source

def selectData(index_code, area_code, dim_cal, dim_dur, frequency, occur_period_star, occur_period_end, model):
    data = {
        "index_code": index_code,
        "area_code": area_code,
        "dim_cal": dim_cal,
        "dim_dur": dim_dur,
        "frequency": frequency,
        "model": model
    }
    if occur_period_star != "":
        data["occur_period_star"] = occur_period_star
    if occur_period_end != "":
        data["occur_period_end"] = occur_period_end
    else:
        data["occur_period_end"] = datetime.now().strftime("%Y%m")

    # st.write('You selected:', data)
    macro_index_data = get_macro_index_data(data)
    st.session_state.macro_index_data = macro_index_data

按键触发

select_data_flag = col1_1_1.button(label="查询", on_click=selectData,
                                       args=(index_code["index_code"].tolist(),
                                             area_code,
                                             dim_cal["cur_code"].tolist(),
                                             index_code["dim_dur"].tolist(),
                                             index_code["frequency"].tolist(),
                                             occur_period_star,
                                             occur_period_end,
                                             model
                                             )
                                       )
下载数据

下载功能

with open('./pkg/templates/jquery-3.2.1.min.js', 'r') as f:
    jquery = f.read()

def downloadFile(df, path, **kwargs):
    # https://discuss.streamlit.io/t/automatic-download-select-and-download-file-with-single-button-click/15141/4
    index = kwargs.get("index", False)
    df.to_excel(path, index=index)
    with open(path, "rb") as file:
        bytes = file.read()
    os.remove(path)
    b64 = base64.b64encode(bytes).decode()
    href = f"""
    <html>
    <head>
    <title>Start Auto Download file</title>
    <script language="javascript">
    {jquery}
    </script>
    <script>
    $('<a href="data:text/xlsx;base64,{b64}" download="{path.split("/")[1]}">')[0].click()
    </script>
    </head>
    </html>"""
    components.html(href, height=0)

这里的js是网页连接上的js,由于网络问题导致经常访问不了,所以这里也是改成读取本地js文件的写法。

按键触发

    download_data_flag = col1_1_2.button(label="下载", on_click=downloadFile, args=(st.session_state.macro_index_data, "download/数据表.xlsx",))
选择按钮

单项选择

data_model_select = st.selectbox("查询的数据类型:", ("数据表", "判断表", "图表"))

在这里插入图片描述

带全选的多项选择

def multiselectContainer(label:str, item:list):
    # https://discuss.streamlit.io/t/select-all-on-a-streamlit-multiselect/9799/2
    container = st.container()
    key = "全选" + label
    select_all = st.checkbox("全选", key=key)
    if select_all:
        select = container.multiselect(label + ":", (item), (item))
    else:
        select = container.multiselect(label + ":", (item))

    return select
multiselectContainer("指标名称", base_dim_index["index_name"].tolist())

在这里插入图片描述
树状结构选择

def treeSelectNodes(source):
    cur_level = sorted(source["cur_level"].unique().tolist(), reverse=True)

    nodes = []
    detail_col = ["country_code", "province_code", "city_code", "area_code", "street_code", "community_code"]
    for index, row in source.iterrows():
        key = set(row[detail_col].fillna("").tolist())
        node = {"label": row.cur_name, "value": row.cur_code, "children": []}
        nodes.append([key, node, row["cur_level"]])
    nodes_df = pd.DataFrame(nodes,columns=["key", "node", "cur_level"])
    nodes_df["is_use"] = False

    for i in range(len(cur_level) - 1):
        tmp = nodes_df[(nodes_df["cur_level"] >= cur_level[i]) &
                       (nodes_df["is_use"] == False)
                       ]  # 小于等于当前层级
        tmp_1 = nodes_df[nodes_df["cur_level"] == cur_level[i + 1]]  # 上一层级
        for index, row in tmp.iterrows():
            for tem_1_key in tmp_1["key"].tolist():

                if tem_1_key.issubset(row["key"]) :  # 判断是否包含关系
                    node = nodes_df[nodes_df["key"] == row["key"]]["node"].tolist()[0]
                    node_1 = nodes_df[nodes_df["key"] == tem_1_key]["node"].tolist()[0]
                    node_1["children"].append(node)
                    nodes_df.loc[nodes_df["key"] == row["key"], "is_use"] = True
                    nodes_df.loc[nodes_df["key"] == tem_1_key, "node"] \
                        = nodes_df.loc[nodes_df["key"] == tem_1_key, "node"].apply(lambda x: node_1)

    return nodes_df[nodes_df["is_use"] == False]["node"].tolist()

@st.experimental_memo
def tree_select_nodes(area_code_list:list):
    source = md.get_dim_admin_area(area_code_list)
    nodes = treeSelectNodes(source)
    return nodes

def tree_select_container(label ,area_code_list, value_node_dict):
    container = st.container()
    nodes = tree_select_nodes(area_code_list)
    select_all = st.checkbox("全选", key="tree_select_all")
    if select_all:
        return_select = tree_select(nodes, checked=area_code_list, check_model="all", no_cascade=True, show_expand_all=True)
    else:
        return_select = tree_select(nodes, check_model="all", no_cascade=True, show_expand_all=True)
    show_select = [value_node_dict[i] for i in return_select["checked"]]
    container.text_area(label, ",".join(show_select), disabled=True, height=130)

    # st.write(return_select)
    return return_select["checked"]
    
area_code = tree_select_container("已选择行政区划",
                                  base_dim_area["area_code"].tolist(),
                                  base_dim_area.set_index("area_code").to_dict()["area_name"])

在这里插入图片描述
勾选后文字划掉

# https://github.com/arnaudmiribel/streamlit-extras/blob/main/src/streamlit_extras/stodo/__init__.py
def to_do(st_commands, checkbox_id:str, value:bool=False):
    """Create a to_do item

    Args:
        st_commands (_type_): _description_
        checkbox_id (_type_): _description_

    Returns:
        _type_: _description_
    """
    container = st.container()
    cols = container.columns((1, 100))
    done = cols[0].checkbox("", key=checkbox_id, value=value)

    if done:
        for (cmd, *args) in st_commands:
            with cols[1]:
                if cmd == st.write:
                    text = args[0]
                    cols[1].write(
                        "<s style='color: rgba(49, 51, 63, 0.4)'>" f" {text} </s>",
                        unsafe_allow_html=True,
                    )
                else:
                    if cmd in (
                        st.slider,
                        st.button,
                        st.checkbox,
                        st.time_input,
                        st.color_picker,
                        st.selectbox,
                        st.camera_input,
                        st.radio,
                        st.date_input,
                        st.multiselect,
                        st.text_area,
                        st.text_input,
                    ):
                        cmd(*args, disabled=True)
                    else:
                        cmd(*args)

    else:
        for (cmd, *args) in st_commands:
            with cols[1]:
                if cmd == st.write:
                    st.write(*args, unsafe_allow_html=True)
                else:
                    cmd(*args)
    st.write("")
    return done

to_do(
    [(st.write, "☕ Take my coffee"), (st.write, "🥞 Have a nice breakfast")],
    "coffee",
)
to_do(
    [(st.write, "☕ Take my coffee")],
    "coffee1",
)

在这里插入图片描述
页面跳转

# ===============================页面跳转=========================
def switch_page(page_name: str):
    # https://github.com/arnaudmiribel/streamlit-extras/blob/main/src/streamlit_extras/switch_page_button/__init__.py
    from streamlit.runtime.scriptrunner import RerunData, RerunException
    from streamlit.source_util import get_pages

    def standardize_name(name: str) -> str:
        return name.lower().replace("_", " ")

    page_name = standardize_name(page_name)

    pages = get_pages("")

    for page_hash, config in pages.items():
        if standardize_name(config["page_name"]) == page_name:
            raise RerunException(
                RerunData(
                    page_script_hash=page_hash,
                    page_name=page_name,
                )
            )

    page_names = [standardize_name(config["page_name"]) for config in pages.values()]

    raise ValueError(f"Could not find page {page_name}. Must be one of {page_names}")

want_to_contribute = st.button("重点指标地区覆盖度!")
if want_to_contribute:
    switch_page("重点指标地区覆盖度")
# ===============================页面跳转=========================

# ===============================页面跳转1=========================
from streamlit.components.v1 import html
import urllib.parse
def nav_page(page_name, timeout_secs=3):
    # https://github.com/streamlit/streamlit/issues/4832
    page_name = urllib.parse.quote(page_name.encode('utf8'))
    nav_script = """
        <script type="text/javascript">
            function attempt_nav_page(page_name, start_time, timeout_secs) {
                var links = window.parent.document.getElementsByTagName("a");
                for (var i = 0; i < links.length; i++) {
                    if (links[i].href.toLowerCase().endsWith("/" + page_name.toLowerCase())) {
                        links[i].click();
                        return;
                    }
                }
                var elasped = new Date() - start_time;
                if (elasped < timeout_secs * 1000) {
                    setTimeout(attempt_nav_page, 100, page_name, start_time, timeout_secs);
                } else {
                    alert("Unable to navigate to page '" + page_name + "' after " + timeout_secs + " second(s).");
                }
            }
            window.addEventListener("load", function() {
                attempt_nav_page("%s", new Date(), %d);
            });
        </script>
    """ % (page_name, timeout_secs)
    html(nav_script)

if st.button("重点指标数据查询"):
    nav_page("重点指标数据查询")
# ===============================页面跳转1=========================

在这里插入图片描述

数据展示

无数据时提醒

st.warning('warning: 没有查询到数据', icon="⚠️")

在这里插入图片描述

表格展示-带筛选器

def dataframe_explorer(df: pd.DataFrame) -> pd.DataFrame:
    # https://github.com/arnaudmiribel/streamlit-extras/blob/main/src/streamlit_extras/dataframe_explorer/__init__.py
    """
    Adds a UI on top of a dataframe to let viewers filter columns
    Args:
        df (pd.DataFrame): Original dataframe
    Returns:
        pd.DataFrame: Filtered dataframe
    """

    random_key_base = pd.util.hash_pandas_object(df)

    df = df.copy()

    # Try to convert datetimes into standard format (datetime, no timezone)
    # for col in df.columns:
    #     if is_object_dtype(df[col]):
    #         try:
    #             df[col] = pd.to_datetime(df[col])
    #         except Exception:
    #             pass
    #
    #     if is_datetime64_any_dtype(df[col]):
    #         df[col] = df[col].dt.tz_localize(None)

    modification_container = st.container()

    with modification_container:
        to_filter_columns = st.multiselect(
            "数据表筛选列", # "Filter dataframe on",
            df.columns,
            key=f"{random_key_base}_multiselect",
        )
        filters: Dict[str, Any] = dict()
        for column in to_filter_columns:
            left, right = st.columns((1, 20))
            # Treat columns with < 10 unique values as categorical
            if is_categorical_dtype(df[column]) or df[column].nunique() < 10:
                left.write("↳")
                filters[column] = right.multiselect(
                    f"{column}的数据值", # f"Values for {column}",
                    df[column].unique(),
                    default=df[column].unique().tolist(),
                    key=f"{random_key_base}_{column}",
                )
                df = df[df[column].isin(filters[column])]
            elif is_numeric_dtype(df[column]):
                left.write("↳")
                _min = float(df[column].min())
                _max = float(df[column].max())
                step = (_max - _min) / 100
                filters[column] = right.slider(
                    f"{column}的数据值", # f"Values for {column}",
                    _min,
                    _max,
                    (_min, _max),
                    step=step,
                    key=f"{random_key_base}_{column}",
                )
                df = df[df[column].between(*filters[column])]
            elif is_datetime64_any_dtype(df[column]):
                left.write("↳")
                filters[column] = right.date_input(
                    f"{column}的数据值", # f"Values for {column}",
                    value=(
                        df[column].min(),
                        df[column].max(),
                    ),
                    key=f"{random_key_base}_{column}",
                )
                if len(filters[column]) == 2:
                    filters[column] = tuple(map(pd.to_datetime, filters[column]))
                    start_date, end_date = filters[column]
                    df = df.loc[df[column].between(start_date, end_date)]
            else:
                left.write("↳")
                filters[column] = right.text_input(
                    f"{column}的样例值",# f"Pattern in {column}",
                    key=f"{random_key_base}_{column}",
                )
                if filters[column]:
                    df = df[df[column].str.contains(filters[column])]

    return df
# https://pandas.pydata.org/docs/reference/api/pandas.io.formats.style.Styler.format.html
try:
    source = dataframe_explorer(st.session_state.macro_index_data)
except:
    source = st.session_state.macro_index_data.copy()
func = lambda s: "%.2f" % float(s) if isNumber(s) else s
source = source.style.format(func)
st.dataframe(source)  # 表格展示

在这里插入图片描述
表格展示

            source = st.session_state.macro_index_data.copy().applymap(lambda x: x[0] if isinstance(x, list) and len(x) == 1 else "✔️" if isinstance(x, list) and len(x) == 2 else x)
            st.dataframe(source)  # 表格展示

在这里插入图片描述
图表展示

class DrawPic():

    def line(self, data:pd.DataFrame, xaxis_col:str, yaxis_col:List[str], **kwargs):
        title = kwargs.get("title", "")
        subtitle = kwargs.get("subtitle", "")
        yaxis_name = kwargs.get("yaxis_name", "")
        yaxis_ext_col = kwargs.get("yaxis_ext_col", [])
        yaxis_ext_name = kwargs.get("yaxis_ext_name", "")
        chart = Line(init_opts=opts.InitOpts())
        xaxis_data = data[xaxis_col].tolist()
        chart.add_xaxis(xaxis_data)
        for i in yaxis_col:
            series_name = i
            yaxis_data = data[i].tolist()
            chart.add_yaxis(
                series_name,
                yaxis_data,
                # markpoint_opts=opts.MarkPointOpts(data=[opts.MarkPointItem()]),
                label_opts=opts.LabelOpts(is_show=False, formatter="{value}"),
            )
        if yaxis_ext_col != []:
            for i in yaxis_ext_col:
                series_name = i
                yaxis_data = data[i].tolist()
                chart.add_yaxis(
                    series_name,
                    yaxis_data,
                    yaxis_index=1,
                    label_opts=opts.LabelOpts(is_show=False, formatter="{value}"),
                )
            chart.extend_axis(
                yaxis=opts.AxisOpts(
                    name=yaxis_ext_name,
                    name_location="end",
                    type_="value",
                    is_inverse=False,
                    axistick_opts=opts.AxisTickOpts(is_show=True),
                    splitline_opts=opts.SplitLineOpts(is_show=True),
                )
            )
        chart.set_global_opts(title_opts=opts.TitleOpts(title=title, subtitle=subtitle),
                              tooltip_opts=opts.TooltipOpts(trigger="axis", axis_pointer_type="cross"),
                              yaxis_opts=opts.AxisOpts(
                                    name=yaxis_name,
                                    type_="value",
                                    axistick_opts=opts.AxisTickOpts(is_show=True),
                                    splitline_opts=opts.SplitLineOpts(is_show=True),
                              ),
                              # xaxis_opts=opts.AxisOpts(type_="category", boundary_gap=False),
                              datazoom_opts=opts.DataZoomOpts(is_show=True, range_start=0, range_end=100,),
                              # legend_opts=opts.LegendOpts(orient="vertical", pos_left="right")
                              legend_opts=opts.LegendOpts(orient="horizontal", pos_top="top", type_="scroll")
                              )



        return chart

    def bar(self, data:pd.DataFrame, xaxis_col:str, yaxis_col:List[str], **kwargs):
        title = kwargs.get("title", "")
        subtitle = kwargs.get("subtitle", "")
        yaxis_name = kwargs.get("yaxis_name", "")
        yaxis_ext_col = kwargs.get("yaxis_ext_col", [])
        yaxis_ext_name = kwargs.get("yaxis_ext_name", "")
        chart = Bar(init_opts=opts.InitOpts())
        xaxis_data = data[xaxis_col].tolist()
        chart.add_xaxis(xaxis_data)
        for i in yaxis_col:
            series_name = i
            yaxis_data = data[i].tolist()
            chart.add_yaxis(
                series_name,
                yaxis_data,
                # markpoint_opts=opts.MarkPointOpts(data=[opts.MarkPointItem()]),
                label_opts=opts.LabelOpts(is_show=False, formatter="{value}"),
            )
        if yaxis_ext_col != []:
            for i in yaxis_ext_col:
                series_name = i
                yaxis_data = data[i].tolist()
                chart.add_yaxis(
                    series_name,
                    yaxis_data,
                    yaxis_index=1,
                    label_opts=opts.LabelOpts(is_show=False, formatter="{value}"),
                )
            chart.extend_axis(
                yaxis=opts.AxisOpts(
                    name=yaxis_ext_name,
                    name_location="end",
                    type_="value",
                    is_inverse=False,
                    axistick_opts=opts.AxisTickOpts(is_show=True),
                    splitline_opts=opts.SplitLineOpts(is_show=True),
                )
            )
        chart.set_global_opts(title_opts=opts.TitleOpts(title=title, subtitle=subtitle),
                              tooltip_opts=opts.TooltipOpts(trigger="axis", axis_pointer_type="cross"),
                              yaxis_opts=opts.AxisOpts(
                                    name=yaxis_name,
                                    type_="value",
                                    axistick_opts=opts.AxisTickOpts(is_show=True),
                                    splitline_opts=opts.SplitLineOpts(is_show=True),
                              ),
                              # xaxis_opts=opts.AxisOpts(type_="category", boundary_gap=False),
                              datazoom_opts=opts.DataZoomOpts(is_show=True, range_start=0, range_end=100,),
                              # legend_opts=opts.LegendOpts(orient="vertical", pos_left="right")
                              legend_opts=opts.LegendOpts(orient="horizontal", pos_top="top", type_="scroll")
                              )



        return chart

    def mixBarLine(self, data:pd.DataFrame, xaxis_col:str,
                        yaxis_col:List[str], yaxis_ext_col:List[str],
                        **kwargs):
        title = kwargs.get("title", "")
        subtitle = kwargs.get("subtitle", "")
        yaxis_name = kwargs.get("yaxis_name", "")
        yaxis_ext_name = kwargs.get("yaxis_ext_name", "")
        chart = Bar(init_opts=opts.InitOpts())
        chart1 = Line(init_opts=opts.InitOpts())
        xaxis_data = data[xaxis_col].tolist()
        chart.add_xaxis(xaxis_data)
        chart1.add_xaxis(xaxis_data)
        for i in yaxis_col:
            series_name = i
            yaxis_data = data[i].tolist()
            chart.add_yaxis(
                series_name,
                yaxis_data,
                # markpoint_opts=opts.MarkPointOpts(data=[opts.MarkPointItem()]),
                label_opts=opts.LabelOpts(is_show=False, formatter="{value}"),
            )
        chart.extend_axis(
            yaxis=opts.AxisOpts(
                name=yaxis_ext_name,
                name_location="end",
                type_="value",
                is_inverse=False,
                position="right",
                axistick_opts=opts.AxisTickOpts(is_show=True),
                splitline_opts=opts.SplitLineOpts(is_show=True),
            )
        )
        chart.set_global_opts(title_opts=opts.TitleOpts(title=title, subtitle=subtitle),
                              tooltip_opts=opts.TooltipOpts(trigger="axis", axis_pointer_type="cross"),
                              yaxis_opts=opts.AxisOpts(
                                    name=yaxis_name,
                                    type_="value",
                                    axistick_opts=opts.AxisTickOpts(is_show=True),
                                    splitline_opts=opts.SplitLineOpts(is_show=True),
                              ),
                              xaxis_opts=opts.AxisOpts(type_="category",
                                                       axispointer_opts=opts.AxisPointerOpts(is_show=True, type_="shadow"),
                                                       ),
                              datazoom_opts=opts.DataZoomOpts(is_show=True, range_start=0, range_end=100,),
                              # legend_opts=opts.LegendOpts(orient="vertical", pos_left="right")
                              legend_opts=opts.LegendOpts(orient="horizontal", pos_top="top", type_="scroll"),
                              )
        for i in yaxis_ext_col:
            series_name = i
            yaxis_data = data[i].tolist()
            chart1.add_yaxis(
                series_name,
                yaxis_data,
                yaxis_index=1,
                label_opts=opts.LabelOpts(is_show=False, formatter="{value}"),
                z_level=1, # 调整折现图级别,高级别显示在低级别的图形上
            )

        return chart.overlap(chart1)



    def scatter(self, x_data, y_data, xaxis_name, yaxis_name, **kwargs):
        title = kwargs.get("title", "")
        subtitle = kwargs.get("subtitle", "")
        chart = Scatter(init_opts=opts.InitOpts())
        chart.add_xaxis(xaxis_data=x_data)
        chart.add_yaxis(
        series_name="",
        y_axis=y_data,
        # symbol_size=20,
        label_opts=opts.LabelOpts(is_show=False),
        )
        chart.set_global_opts(title_opts=opts.TitleOpts(title=title, subtitle=subtitle),
                              tooltip_opts=opts.TooltipOpts(trigger="item", axis_pointer_type="cross"),
                              xaxis_opts=opts.AxisOpts(
                                    name=xaxis_name,
                                    type_="value",
                                    splitline_opts=opts.SplitLineOpts(is_show=True)
                              ),
                              yaxis_opts=opts.AxisOpts(
                                    name=yaxis_name,
                                    type_="value",
                                    axistick_opts=opts.AxisTickOpts(is_show=True),
                                    splitline_opts=opts.SplitLineOpts(is_show=True),
                              ),
                              # xaxis_opts=opts.AxisOpts(type_="category", boundary_gap=False),
                              datazoom_opts=opts.DataZoomOpts(is_show=True, range_start=0, range_end=100),
                              )
        return chart

    def heatmap(self, data:pd.DataFrame, **kwargs):
        visualmap_opts_min = kwargs.get("visualmap_opts_min", 0)
        visualmap_opts_max = kwargs.get("visualmap_opts_max", 1)
        xaxis_data = data.columns.tolist()
        yaxis_data = data.index.tolist()
        corr_rows = data.shape[0]
        corr_cols = data.shape[1]
        value = [[i, j, round(data.iloc[i, j], 4)] for i in range(corr_rows) for j in range(corr_cols)]
        width = max(100*len(xaxis_data), 900)
        height = max(50*len(xaxis_data), 600)
        chart = HeatMap(init_opts=opts.InitOpts(width=f"{width}px", height=f"{height}px"))
        chart.add_xaxis(xaxis_data=xaxis_data)
        chart.add_yaxis(
                series_name="Punch Card",
                yaxis_data=yaxis_data,
                value=value,
                # label_opts=opts.LabelOpts(
                #     is_show=True, color="#fff", position="bottom", horizontal_align="50%"
                # ),
             )
        chart.set_series_opts()
        chart.set_global_opts(
                legend_opts=opts.LegendOpts(is_show=False),
                xaxis_opts=opts.AxisOpts(
                    type_="category",
                    splitarea_opts=opts.SplitAreaOpts(
                        is_show=True, areastyle_opts=opts.AreaStyleOpts(opacity=1)
                    ),
                ),
                yaxis_opts=opts.AxisOpts(
                    type_="category",
                    splitarea_opts=opts.SplitAreaOpts(
                        is_show=True, areastyle_opts=opts.AreaStyleOpts(opacity=1)
                    ),
                ),
                visualmap_opts=opts.VisualMapOpts(
                    min_=visualmap_opts_min, max_=visualmap_opts_max, is_calculable=True, orient="vertical", pos_left="right"
                ),
                tooltip_opts=opts.TooltipOpts(trigger="item", axis_pointer_type="cross"),
                toolbox_opts=opts.ToolboxOpts(is_show=True),
                # datazoom_opts=opts.DataZoomOpts(is_show=True, range_start=0, range_end=100),
            )
        return chart
source = st.session_state.macro_index_data.copy()
if ("tag" not in source.columns) or (len(cal_label_select) == 0) or (len(base_dim_index_select) == 0):
    st.dataframe(source)
else:
    chart_data = source[source["tag"] == "index_value"]
    unit_data = source[source["tag"] == "unit_use"]
    tab1, tab2, tab3 = col1.tabs(["📈 图表", "🗃 数据值", "🎀 分析"])
    with tab1:
        item = [i for i in chart_data.columns if i not in ["occur_period", "tag"]]
        tab1_select = tab1.selectbox("选择数据" + ":", (base_dim_index_select))

        # 正常的单轴构造
        yaxis_col = [i for i in chart_data.columns if (tab1_select in i) and (cal_label_select[0] in i)]
        for i in yaxis_col:
            if unit_data[i].dropna().unique().tolist() != []:
                unit_use = unit_data[i].dropna().unique().tolist()[0]
                break
        if yaxis_col == []:
            yaxis_name = ""
        else:
            yaxis_name = cal_label_select[0] + "(" + unit_use + ")"
        # 额外的第二轴构造
        if len(cal_label_select) == 2:
            yaxis_ext_col = [i for i in chart_data.columns if (tab1_select in i) and (cal_label_select[1] in i)]
            for i in yaxis_ext_col:
                if unit_data[i].dropna().unique().tolist() != []:
                    unit_ext_use = unit_data[i].dropna().unique().tolist()[0]
                    break
            if yaxis_ext_col != []:
                yaxis_ext_name = cal_label_select[1] + "(" + unit_ext_use + ")"
            else:
                yaxis_ext_name = ""
        else:
            yaxis_ext_col = []
            yaxis_ext_name = ""
        if len(cal_label_select) == 2:
            c = dp.mixBarLine(chart_data,
                        "occur_period",
                        yaxis_col,
                        yaxis_ext_col,
                        yaxis_name=yaxis_name,
                        yaxis_ext_name=yaxis_ext_name
                        )
        else:
            c = dp.line(chart_data,
                        "occur_period",
                        yaxis_col,
                        yaxis_name=yaxis_name)
        st_pyecharts(c, height="500px")
    with tab2:
        st.dataframe(source)
清除缓存
def clearCache():
    # https://docs.streamlit.io/library/advanced-features/experimental-cache-primitives
    st.experimental_memo.clear()
    st.experimental_singleton.clear()

查询配置信息

st.write("theme base: ",st.get_option("theme.base"))
st.write("server port: ",st.get_option("server.port"))

启动项

streamlit run script.py --theme.base light --server.port 80

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/170315.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Solidity 中的数学(第 2 部分:溢出)

本文是关于在 Solidity 中进行数学运算的系列文章中的第二篇。这次的主题是&#xff1a;溢出。 介绍 每次我看到、*或**审计另一个 Solidity 智能合约时&#xff0c;我都会开始写以下评论&#xff1a;“这里可能会溢出”。我需要几秒钟来写这四个字&#xff0c;在这几秒钟内&a…

【Pandas】18 小练习

#【Pandas】18 小练习 2023.1.16 两个pandas小练习 18.1 疫情数据分析 18.1.1 观察数据 import pandas as pd import osdf pd.read_csv("data/covid19_day_wise.csv") dfDateConfirmedDeathsRecoveredActiveNew casesNew deathsNew recoveredDeaths / 100 CasesR…

日常渗透刷洞的一些小工具

SecurityServiceBox&#xff1a;一个Windows平台下既可以满足安服仔日常渗透工作也可以批量刷洞的工具盒子 0x00 更新题外话—终端选取 在盒子的tools当中&#xff0c;很多工具运行都是带有颜色标识的&#xff0c;例如nuclei&#xff0c; vulmap&#xff0c;原生的cmd终端虽然…

MD5有哪些特性,常用的MD5加密真的安全吗

在密码学中&#xff0c;MD5是比较常用的算法之一。大家都知道MD5曾一度被认为十分安全&#xff0c;并且在国内外得到广泛适用。然而&#xff0c;王小云教授的研究证明利用MD5算法的磕碰能够严重威胁信息体系安全&#xff0c;因此引发了密码学界的轩然大波。那么&#xff0c;关于…

为什么JDK中String类的indexof不使用KMP或者Boyer-Moore等时间复杂度低的算法编辑器

indexOf底层使用的方法是典型的BF算法。 1、KMP算法 由来 外国人&#xff1a; Knuth&#xff0c;Morris和Pratt发明了这个算法&#xff0c;然后取它三个的首字母进行了命名。所以叫做KMP。 KMP真的很难理解&#xff0c;建议多看几遍 B站代码随想录&#xff0c;文章也的再好 …

【蓝桥杯备赛系列 | 真题 | 简单题】2014年第五届真题-分糖果

&#x1f935;‍♂️ 个人主页: 计算机魔术师 &#x1f468;‍&#x1f4bb; 作者简介&#xff1a;CSDN内容合伙人&#xff0c;全栈领域优质创作者。 蓝桥杯竞赛专栏 | 简单题系列 &#xff08;一&#xff09; 作者&#xff1a; 计算机魔术师 版本&#xff1a; 1.0 &#xff08…

【博客597】iptables如何借助连续内存块通过xt_table结构管理流量规则

iptables如何借助连续内存块通过xt_table结构管理流量规则 1、iptables 分为两部分&#xff1a; 用户空间的 iptables 命令向用户提供访问内核 iptables 模块的管理界面。内核空间的 iptables 模块在内存中维护规则表&#xff0c;实现表的创建及注册。 2、iptables如何管理众…

第十二章 数据库设计

前言 本文章为看视频所写。 视频链接&#xff1a;168. 14.1 数据库设计前言_哔哩哔哩_bilibili 目录 前言 章节提要 一、数据库设计过程 二、E-R模型 三、答题技巧 四、案例分析 1、案例1 二、案例2 章节提要 一、数据库设计过程 ER模型&#xff1a;是实体联系模型&#x…

第一章 数据结构绪论

数据结构&#xff1a;是相互之间存在一种或多种特定关系的数据元素的集合。数据结构是一门研究非数值计算的程序设计问题中的操作对象&#xff0c;以及它们之间关系和操作等相关问题的学科。程序设计数据结构算法数据&#xff1a;是描述客观事物的符号&#xff0c;是计算机中可…

2.2、进程的状态与转换

整体框架 1、三种基本状态 进程是程序的一次执行。在这个执行过程中&#xff0c;有时进程正在被 CPU 处理&#xff0c;有时又需要等待 CPU 服务&#xff0c; 可见进程的状态是会有各种变化。 为了方便对各个进程的管理&#xff0c;操作系统需要将进程合理地划分为几种状态 ①…

随机梯度下降法的数学基础

梯度是微积分中的基本概念&#xff0c;也是机器学习解优化问题经常使用的数学工具&#xff08;梯度下降算法&#xff09;。因此&#xff0c;有必要从头理解梯度的来源和意义。本文从导数开始讲起&#xff0c;讲述了导数、偏导数、方向导数和梯度的定义、意义和数学公式&#xf…

SpringBoot-自动配置-切换内置web服务器

SpringBoot-自动配置-切换内置web服务器 介绍 SpringBoot的web环境中默认使用tomcat作为内置服务器其实SpringBoot提供了4种内置服务器供我们选择分别为&#xff1a;Jetty&#xff0c;Netty&#xff0c;Tomcat&#xff0c;Undertow我们可以很方便的进行切换 实例演示 在pom文件…

简单了解操作系统、进程内存管理

目录 前言&#xff1a; 一、操作系统&#xff1a; 操作系统的定位&#xff1a; 应用程序&#xff1a; 系统调用&#xff1a; 操作系统内核&#xff1a; 驱动程序&#xff1a; 硬件设备&#xff1a; 二、进程&#xff1a; 什么是进程&#xff1f; 进程的描述与组…

自定义类型,结构体、枚举、联合(C语言)

目录 结构体 结构体的基础知识&#xff1a; 结构体的声明&#xff1a; 特殊声明&#xff1a; 结构体的自引用 结构体变量的定义和初始化 结构体内存对齐&#xff1a; 修改默认对齐数&#xff1a; 结构体传参 结构体的柔型数组 柔型数组的书写 柔性数组的特点 柔性数组的使用 柔…

【Java寒假打卡】JavaWeb-Tomcat

【Java寒假打卡】JavaWeb-Tomcat服务器Tomcat下载和安装Tomcat的目录结构基本使用控制台乱码的问题IDEA集成TomcatJavaWeb项目的目录结构Tomcat-idea发布项目Tomcat-WAR包发布项目Tomcat配置文件的介绍Tomcat配置虚拟目录Tomcat配置虚拟主机服务器 Tomcat下载和安装 将下载好的…

干货 | 数据安全和个人信息保护审计的方法研究

以下内容整理自清华大学《数智安全与标准化》课程大作业期末报告同学的汇报内容。第一部分&#xff1a;概述我们的研究核心是个人信息保护合规审计&#xff0c;具体指个人信息处理活动是否遵守我国相关法律法规的监督性审计。在个保法出台后&#xff0c;我国形成了以内部审计为…

我用ChatGPT写神经网络:一字不改,结果竟很好用

自从去年底推出以来&#xff0c;对话式 AI 模型 ChatGPT 火遍了整个社区。 ChatGPT 的确是一个了不起的工具&#xff0c;就像一个「潘多拉魔盒」。一旦找到正确的打开方式&#xff0c;你或许会发现&#xff0c;自己再也离不开它了。 作为一个全能选手&#xff0c;人们给 Chat…

Fedora 38发布Budgie与Sway定制版

导读两款新的 Fedora 定制版将在 Fedora 38 发布时首次亮相。我们期待着它们在 Fedora 37 时出现&#xff0c;但在 Fedora 38 中终于来了&#xff01; 早在 2022 年 5 月&#xff0c;Budgie 项目的主要开发者 Joshua Strobl ​​宣布​​&#xff0c;Budgie 已被提交到 Fedora…

第五届字节跳动青训营 前端进阶学习笔记(四)TypeScript入门

文章目录前言TypeScript概要1.什么是TypeScript2.TypeScript基本语法基础数据类型对象类型函数类型函数重载数组类型补充类型泛型约束和泛型默认参数类型别名和类型断言高级类型1.联合类型2.交叉类型3.类型守卫类型谓词总结前言 课程重点&#xff1a; TypeScript概要TypeScri…

Kubernets核心介绍及实战

1、资源创建方式 命令行YAML 2、Namespace 名称空间用来隔离资源 “namespace"通常被翻译为「命名空间」&#xff0c;听起来好像比较抽象&#xff0c;其实重点是在这个"space”。它和描述进程的虚拟地址空间的address space一样&#xff0c;都是提供一种独占的视角…