基于机器学习模型预测信用卡潜在用户(XGBoost、LightGBM和Random Forest)

news2024/11/15 4:41:42

基于机器学习模型预测信用卡潜在用户(XGBoost、LightGBM和Random Forest)

随着数据科学和机器学习的发展,越来越多的企业开始利用这些技术来提高运营效率。在这篇博客中,我将分享如何利用机器学习模型来预测信用卡的潜在客户。此项目基于我整理的代码和文件,涉及数据预处理、数据可视化、模型训练、预测及结果保存的完整流程。

项目概述

本项目旨在使用机器学习模型预测哪些客户最有可能成为信用卡的潜在客户。我们将使用三个主要的机器学习模型:XGBoost、LightGBM和随机森林(Random Forest)。以下是项目的主要步骤:

1、数据预处理
2、数据可视化
3、模型训练
4、模型预测
5、模型保存

1. 数据预处理

数据预处理是机器学习项目中至关重要的一步。通过清洗和准备数据,我们可以提高模型的性能和准确性。

import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import matplotlib.pyplot as plt 
import seaborn as sns
#Loading the dataset
df_train=pd.read_csv("dataset/train_s3TEQDk.csv")
df_train["source"]="train"
df_test=pd.read_csv("dataset/test_mSzZ8RL.csv")
df_test["source"]="test"
df=pd.concat([df_train,df_test],ignore_index=True)
df.head()
IDGenderAgeRegion_CodeOccupationChannel_CodeVintageCredit_ProductAvg_Account_BalanceIs_ActiveIs_Leadsource
0NNVBBKZBFemale73RG268OtherX343No1045696No0.0train
1IDD62UNGFemale30RG277SalariedX132No581988No0.0train
2HD3DSEMCFemale56RG268Self_EmployedX326No1484315Yes0.0train
3BF3NC7KVMale34RG270SalariedX119No470454No0.0train
4TEASRWXVFemale30RG282SalariedX133No886787No0.0train

1. Checking and Cleaning Dataset :

#Checking columns of dataset
df.columns
Index(['ID', 'Gender', 'Age', 'Region_Code', 'Occupation', 'Channel_Code',
       'Vintage', 'Credit_Product', 'Avg_Account_Balance', 'Is_Active',
       'Is_Lead', 'source'],
      dtype='object')
#Checking shape 
df.shape
(351037, 12)
#Checking unique values 
df.nunique()
ID                     351037
Gender                      2
Age                        63
Region_Code                35
Occupation                  4
Channel_Code                4
Vintage                    66
Credit_Product              2
Avg_Account_Balance    162137
Is_Active                   2
Is_Lead                     2
source                      2
dtype: int64
#Check for Null Values
df.isnull().sum()
ID                          0
Gender                      0
Age                         0
Region_Code                 0
Occupation                  0
Channel_Code                0
Vintage                     0
Credit_Product          41847
Avg_Account_Balance         0
Is_Active                   0
Is_Lead                105312
source                      0
dtype: int64

Observation:
Null values are present in Credit _Product column.

#Fill null values in Credit_Product feature
df['Credit_Product']= df['Credit_Product'].fillna("NA")
#Again check for null values
df.isnull().sum()
ID                          0
Gender                      0
Age                         0
Region_Code                 0
Occupation                  0
Channel_Code                0
Vintage                     0
Credit_Product              0
Avg_Account_Balance         0
Is_Active                   0
Is_Lead                105312
source                      0
dtype: int64
#Checking Datatypes and info
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 351037 entries, 0 to 351036
Data columns (total 12 columns):
 #   Column               Non-Null Count   Dtype  
---  ------               --------------   -----  
 0   ID                   351037 non-null  object 
 1   Gender               351037 non-null  object 
 2   Age                  351037 non-null  int64  
 3   Region_Code          351037 non-null  object 
 4   Occupation           351037 non-null  object 
 5   Channel_Code         351037 non-null  object 
 6   Vintage              351037 non-null  int64  
 7   Credit_Product       351037 non-null  object 
 8   Avg_Account_Balance  351037 non-null  int64  
 9   Is_Active            351037 non-null  object 
 10  Is_Lead              245725 non-null  float64
 11  source               351037 non-null  object 
dtypes: float64(1), int64(3), object(8)
memory usage: 32.1+ MB
#Changing Yes to 1 and No to 0 in Is_Active column to covert  data into float

df["Is_Active"].replace(["Yes","No"],[1,0],inplace=True)

df['Is_Active'] = df['Is_Active'].astype(float)
df.head()
IDGenderAgeRegion_CodeOccupationChannel_CodeVintageCredit_ProductAvg_Account_BalanceIs_ActiveIs_Leadsource
0NNVBBKZBFemale73RG268OtherX343No10456960.00.0train
1IDD62UNGFemale30RG277SalariedX132No5819880.00.0train
2HD3DSEMCFemale56RG268Self_EmployedX326No14843151.00.0train
3BF3NC7KVMale34RG270SalariedX119No4704540.00.0train
4TEASRWXVFemale30RG282SalariedX133No8867870.00.0train
#Now changing all categorical column into numerical form using label endcoding
cat_col=[ 'Gender', 'Region_Code', 'Occupation','Channel_Code', 'Credit_Product']

from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
for col in cat_col:
    df[col]= le.fit_transform(df[col])


df_2= df
df_2.head()
IDGenderAgeRegion_CodeOccupationChannel_CodeVintageCredit_ProductAvg_Account_BalanceIs_ActiveIs_Leadsource
0NNVBBKZB073181243110456960.00.0train
1IDD62UNG03027203215819880.00.0train
2HD3DSEMC056183226114843151.00.0train
3BF3NC7KV13420201914704540.00.0train
4TEASRWXV03032203318867870.00.0train
#Separating the train and test
df_train=df_2.loc[df_2["source"]=="train"]
df_test=df_2.loc[df_2["source"]=="test"]
df_1 = df_train
#we can drop column as they are irrelevant and have no effect on our data
df_1.drop(columns=['ID',"source"],inplace=True)
df_1.head()
GenderAgeRegion_CodeOccupationChannel_CodeVintageCredit_ProductAvg_Account_BalanceIs_ActiveIs_Lead
0073181243110456960.00.0
103027203215819880.00.0
2056183226114843151.00.0
313420201914704540.00.0
403032203318867870.00.0

2. 数据可视化

数据可视化有助于我们更好地理解数据的分布和特征。以下是一些常用的数据可视化方法:

import warnings
warnings.filterwarnings("ignore")
plt.rcParams['figure.figsize']  = (10,6)
plt.rcParams['font.size']  = 16
sns.set_style("whitegrid")

sns.distplot(df['Age']);

在这里插入图片描述

sns.distplot(df['Avg_Account_Balance'])
plt.show()

在这里插入图片描述

#Countplot for Gender feature 
# plt.figure(figsize=(8,4))
sns.countplot(df['Gender'],palette='Accent')
plt.show()

在这里插入图片描述

#Countplot for Target variable i.e 'Is_Lead'
target = 'Is_Lead'
# plt.figure(figsize=(8,4))
sns.countplot(df[target],palette='hls')
print(df[target].value_counts())
0.0    187437
1.0     58288
Name: Is_Lead, dtype: int64
plt.rcParams['figure.figsize']  = (12,6)
#Checking occupation with customers
# plt.figure(figsize=(8,4))
sns.countplot(x='Occupation',hue='Is_Lead',data=df,palette= 'magma')
plt.show()

在这里插入图片描述

#Plot showing Activness of customer in last 3 months with respect to Occupation of customer
# plt.figure(figsize=(8,4))
sns.catplot(y='Age',x='Occupation',hue='Is_Active',data=df,kind='bar',palette='Oranges')
plt.show()

在这里插入图片描述

3. 模型训练

我们将使用三个模型进行训练:XGBoost、LightGBM和随机森林。以下是模型的训练代码:

# To balance the dataset , we will apply undersampling method
from sklearn.utils import resample
# separate the minority and majority classes
df_majority = df_1[df_1['Is_Lead']==0]
df_minority = df_1[df_1['Is_Lead']==1]

print(" The majority class values are", len(df_majority))
print(" The minority class values are", len(df_minority))
print(" The ratio of both classes are", len(df_majority)/len(df_minority))
 The majority class values are 187437
 The minority class values are 58288
 The ratio of both classes are 3.215704776283283
# undersample majority class
df_majority_undersampled = resample(df_majority, replace=True, n_samples=len(df_minority), random_state=0)
# combine minority class with oversampled majority class
df_undersampled = pd.concat([df_minority, df_majority_undersampled])

df_undersampled['Is_Lead'].value_counts()
df_1=df_undersampled

# display new class value counts
print(" The undersamples class values count is:", len(df_undersampled))
print(" The ratio of both classes are", len(df_undersampled[df_undersampled["Is_Lead"]==0])/len(df_undersampled[df_undersampled["Is_Lead"]==1]))

 The undersamples class values count is: 116576
 The ratio of both classes are 1.0
# dropping target variable 
#assign the value of y for training and testing phase
xc = df_1.drop(columns=['Is_Lead'])
yc = df_1[["Is_Lead"]]
df_1.head()
GenderAgeRegion_CodeOccupationChannel_CodeVintageCredit_ProductAvg_Account_BalanceIs_ActiveIs_Lead
6162321220010567501.01.0
1513318316905170631.01.0
16046181297222825020.01.0
17059331215223846920.01.0
20144193119210016500.01.0
#Importing necessary libraries
from sklearn import metrics
from scipy.stats import zscore
from sklearn.preprocessing import LabelEncoder,StandardScaler
from sklearn.model_selection import train_test_split,GridSearchCV
from sklearn.decomposition import PCA
from sklearn.metrics import precision_score, recall_score, confusion_matrix, f1_score, roc_auc_score, roc_curve
from sklearn.metrics import accuracy_score,classification_report,confusion_matrix,roc_auc_score,roc_curve
from sklearn.metrics import auc
from sklearn.metrics import plot_roc_curve
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import MultinomialNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import AdaBoostClassifier,GradientBoostingClassifier
from sklearn.model_selection import cross_val_score
from sklearn.naive_bayes import GaussianNB

#Import warnings
import warnings
warnings.filterwarnings('ignore')
#Standardizing value of x by using standardscaler to make the data normally distributed
sc = StandardScaler()
df_xc = pd.DataFrame(sc.fit_transform(xc),columns=xc.columns)
df_xc.head()
GenderAgeRegion_CodeOccupationChannel_CodeVintageCredit_ProductAvg_Account_BalanceIs_Active
00.8719221.1029871.080645-1.2543101.098078-0.961192-1.495172-0.1189581.192880
10.871922-0.895316-0.2085251.008933-0.0528280.484610-1.495172-0.7482731.192880
2-1.1468910.000475-0.208525-1.2543101.0980781.3107841.2200961.310361-0.838307
3-1.1468910.8962661.172729-1.2543101.098078-1.1087231.2200961.429522-0.838307
40.871922-0.137339-0.1164411.008933-0.052828-0.9906991.220096-0.183209-0.838307
#defining a function to find fit of the model

def max_accuracy_scr(names,model_c,df_xc,yc):
    accuracy_scr_max = 0
    roc_scr_max=0
    train_xc,test_xc,train_yc,test_yc = train_test_split(df_xc,yc,random_state = 42,test_size = 0.2,stratify = yc)
    model_c.fit(train_xc,train_yc)
    pred = model_c.predict_proba(test_xc)[:, 1]
    roc_score = roc_auc_score(test_yc, pred)
    accuracy_scr = accuracy_score(test_yc,model_c.predict(test_xc))
    if roc_score> roc_scr_max:
        roc_scr_max=roc_score
        final_model = model_c
        mean_acc = cross_val_score(final_model,df_xc,yc,cv=5,scoring="accuracy").mean()
        std_dev = cross_val_score(final_model,df_xc,yc,cv=5,scoring="accuracy").std()
        cross_val = cross_val_score(final_model,df_xc,yc,cv=5,scoring="accuracy")
    print("*"*50)
    print("Results for model : ",names,'\n',
          "max roc score correspond to random state " ,roc_scr_max ,'\n',
          "Mean accuracy score is : ",mean_acc,'\n',
          "Std deviation score is : ",std_dev,'\n',
          "Cross validation scores are :  " ,cross_val) 
    print(f"roc_auc_score: {roc_score}")
    print("*"*50)
#Now by using multiple Algorithms we are calculating the best Algo which performs best for our data set 
accuracy_scr_max = []
models=[]
#accuracy=[]
std_dev=[]
roc_auc=[]
mean_acc=[]
cross_val=[]
models.append(('Logistic Regression', LogisticRegression()))
models.append(('Random Forest', RandomForestClassifier()))
models.append(('Decision Tree Classifier',DecisionTreeClassifier()))
models.append(("GausianNB",GaussianNB()))

for names,model_c in models:
    max_accuracy_scr(names,model_c,df_xc,yc)

**************************************************
Results for model :  Logistic Regression 
 max roc score correspond to random state  0.727315712597147 
 Mean accuracy score is :  0.6696918411779096 
 Std deviation score is :  0.0030322593046897828 
 Cross validation scores are :   [0.67361469 0.66566588 0.66703839 0.67239974 0.66974051]
roc_auc_score: 0.727315712597147
**************************************************
**************************************************
Results for model :  Random Forest 
 max roc score correspond to random state  0.8792762631904103 
 Mean accuracy score is :  0.8117279862602139 
 Std deviation score is :  0.002031698139189051 
 Cross validation scores are :   [0.81043061 0.81162342 0.81158053 0.81115162 0.81616985]
roc_auc_score: 0.8792762631904103
**************************************************
**************************************************
Results for model :  Decision Tree Classifier 
 max roc score correspond to random state  0.7397495282209642 
 Mean accuracy score is :  0.7426399792028343 
 Std deviation score is :  0.0025271129138200485 
 Cross validation scores are :   [0.74288043 0.74162556 0.74149689 0.73870899 0.74462792]
roc_auc_score: 0.7397495282209642
**************************************************
**************************************************
Results for model :  GausianNB 
 max roc score correspond to random state  0.7956111563031266 
 Mean accuracy score is :  0.7158677336619202 
 Std deviation score is :  0.0015884106712636206 
 Cross validation scores are :   [0.71894836 0.71550504 0.71546215 0.71443277 0.71499035]
roc_auc_score: 0.7956111563031266
**************************************************

First Attempt:Random Forest Classifier

# Estimating best n_estimator using grid search for Randomforest Classifier
parameters={"n_estimators":[1,10,100]}
rf_clf=RandomForestClassifier()
clf = GridSearchCV(rf_clf, parameters, cv=5,scoring="roc_auc")
clf.fit(df_xc,yc)
print("Best parameter : ",clf.best_params_,"\nBest Estimator : ", clf.best_estimator_,"\nBest Score : ", clf.best_score_)
Best parameter :  {'n_estimators': 100} 
Best Estimator :  RandomForestClassifier() 
Best Score :  0.8810508979668068
#Again running RFC with n_estimator = 100
rf_clf=RandomForestClassifier(n_estimators=100,random_state=42)
max_accuracy_scr("RandomForest Classifier",rf_clf,df_xc,yc)
**************************************************
Results for model :  RandomForest Classifier 
 max roc score correspond to random state  0.879415808805665 
 Mean accuracy score is :  0.8115392510996895 
 Std deviation score is :  0.0008997445291505284 
 Cross validation scores are :   [0.81180305 0.81136607 0.81106584 0.81037958 0.81308171]
roc_auc_score: 0.879415808805665
**************************************************
xc_train,xc_test,yc_train,yc_test=train_test_split(df_xc, yc,random_state = 80,test_size=0.20,stratify=yc)
rf_clf.fit(xc_train,yc_train)
yc_pred=rf_clf.predict(xc_test)
plt.rcParams['figure.figsize']  = (12,8)
#  Random Forest Classifier Results

pred_pb=rf_clf.predict_proba(xc_test)[:,1]
Fpr,Tpr,thresholds = roc_curve(yc_test,pred_pb,pos_label=True)
auc = roc_auc_score(yc_test,pred_pb)

print(" ROC_AUC score is ",auc)
print("accuracy score is : ",accuracy_score(yc_test,yc_pred))
print("Precision is : " ,precision_score(yc_test, yc_pred))
print("Recall is: " ,recall_score(yc_test, yc_pred))
print("F1 Score is : " ,f1_score(yc_test, yc_pred))
print("classification report \n",classification_report(yc_test,yc_pred))

#Plotting confusion matrix
cnf = confusion_matrix(yc_test,yc_pred)
sns.heatmap(cnf, annot=True, cmap = "magma")
 ROC_AUC score is  0.8804566893762799
accuracy score is :  0.8127466117687425
Precision is :  0.8397949673811743
Recall is:  0.7729456167438669
F1 Score is :  0.8049848132928354
classification report 
               precision    recall  f1-score   support

         0.0       0.79      0.85      0.82     11658
         1.0       0.84      0.77      0.80     11658

    accuracy                           0.81     23316
   macro avg       0.81      0.81      0.81     23316
weighted avg       0.81      0.81      0.81     23316






<AxesSubplot:>

在这里插入图片描述

plt.rcParams['figure.figsize']  = (12,6)
#plotting the graph for area under curve for representing accuracy of data
plt.plot([0,1],[1,0],'g--')
plt.plot(Fpr,Tpr)
plt.xlabel('False_Positive_Rate')
plt.ylabel('True_Positive_Rate')
plt.title("Random Forest Classifier")
plt.show()

Second Attempt: XG Boost Classifer

from sklearn.utils import class_weight
class_weight.compute_class_weight('balanced', np.unique(yc_train), yc_train["Is_Lead"])

weights = np.ones(y_train.shape[0], dtype = 'float')
for i, val in enumerate(y_train):
    weights[i] = classes_weights[val-1]

xgb_classifier.fit(X, y, sample_weight=weights)
#Trying XGBoost
import xgboost as xg
from xgboost import XGBClassifier
from sklearn.utils import class_weight

clf2 = xg.XGBClassifier(class_weight='balanced').fit(xc_train, yc_train)
class_weight.compute_class_weight('balanced', np.unique(yc_train), yc_train["Is_Lead"])
xg_pred = clf2.predict(xc_test)
[23:35:16] WARNING: /private/var/folders/fc/8d9mxh2s4ssd8k64mkmlsrj00000gn/T/pip-req-build-y40nwdrb/build/temp.macosx-10.9-x86_64-3.8/xgboost/src/learner.cc:576: 
Parameters: { "class_weight" } might not be used.

  This may not be accurate due to some parameters are only used in language bindings but
  passed down to XGBoost core.  Or some parameters are not used but slip through this
  verification. Please open an issue if you find above cases.


[23:35:16] WARNING: /private/var/folders/fc/8d9mxh2s4ssd8k64mkmlsrj00000gn/T/pip-req-build-y40nwdrb/build/temp.macosx-10.9-x86_64-3.8/xgboost/src/learner.cc:1100: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.
plt.rcParams['figure.figsize']  = (12,8)
#XG Boost Results
xg_pred_2=clf2.predict_proba(xc_test)[:,1]
Fpr,Tpr,thresholds = roc_curve(yc_test,xg_pred_2,pos_label=True)
auc = roc_auc_score(yc_test,xg_pred_2)

print(" ROC_AUC score is ",auc)
print("accuracy score is : ",accuracy_score(yc_test,xg_pred))
print("Precision is : " ,precision_score(yc_test, xg_pred))
print("Recall is: " ,recall_score(yc_test, xg_pred))
print("F1 Score is : " ,f1_score(yc_test, xg_pred))
print("classification report \n",classification_report(yc_test,xg_pred))

cnf = confusion_matrix(yc_test,xg_pred)
sns.heatmap(cnf, annot=True, cmap = "magma")
 ROC_AUC score is  0.8706238059470456
accuracy score is :  0.8033968090581575
Precision is :  0.8246741325500275
Recall is:  0.7706296105678504
F1 Score is :  0.7967364313586378
classification report 
               precision    recall  f1-score   support

         0.0       0.78      0.84      0.81     11658
         1.0       0.82      0.77      0.80     11658

    accuracy                           0.80     23316
   macro avg       0.80      0.80      0.80     23316
weighted avg       0.80      0.80      0.80     23316






<AxesSubplot:>

在这里插入图片描述

plt.rcParams['figure.figsize']  = (12,6)
#plotting the graph for area under curve for representing accuracy of data
plt.plot([0,1],[1,0],'g--')
plt.plot(Fpr,Tpr)
plt.xlabel('False_Positive_Rate')
plt.ylabel('True_Positive_Rate')
plt.title("XG_Boost Classifier")
plt.show()

在这里插入图片描述

Third Attempt: LGBM Model with Stratification Folds

#Trying stratification modeling
from sklearn.model_selection import KFold, StratifiedKFold

def cross_val(xc, yc, model, params, folds=10):

    skf = StratifiedKFold(n_splits=folds, shuffle=True, random_state=42)
    for fold, (train_idx, test_idx) in enumerate(skf.split(xc, yc)):
        print(f"Fold: {fold}")
        xc_train, yc_train = xc.iloc[train_idx], yc.iloc[train_idx]
        xc_test, yc_test = xc.iloc[test_idx], yc.iloc[test_idx]

        model_c= model(**params)
        model_c.fit(xc_train, yc_train,eval_set=[(xc_test, yc_test)],early_stopping_rounds=100, verbose=300)

        pred_y = model_c.predict_proba(xc_test)[:, 1]
        roc_score = roc_auc_score(yc_test, pred_y)
        print(f"roc_auc_score: {roc_score}")
        print("-"*50)
    
    return model_c
#Applying LGBM Model with 10 stratified cross-folds
from lightgbm import LGBMClassifier

lgb_params= {'learning_rate': 0.045, 'n_estimators': 10000,'max_bin': 84,'num_leaves': 10,'max_depth': 20,'reg_alpha': 8.457,'reg_lambda': 6.853,'subsample': 0.749}
lgb_model = cross_val(xc, yc, LGBMClassifier, lgb_params)
Fold: 0
Training until validation scores don't improve for 100 rounds
[300]	valid_0's binary_logloss: 0.433821
[600]	valid_0's binary_logloss: 0.433498
Early stopping, best iteration is:
[599]	valid_0's binary_logloss: 0.433487
roc_auc_score: 0.8748638095718249
--------------------------------------------------
Fold: 1
Training until validation scores don't improve for 100 rounds
[300]	valid_0's binary_logloss: 0.434881
[600]	valid_0's binary_logloss: 0.43445
Early stopping, best iteration is:
[569]	valid_0's binary_logloss: 0.43442
roc_auc_score: 0.8755631159104413
--------------------------------------------------
Fold: 2
Training until validation scores don't improve for 100 rounds
[300]	valid_0's binary_logloss: 0.431872
[600]	valid_0's binary_logloss: 0.43125
[900]	valid_0's binary_logloss: 0.430984
Early stopping, best iteration is:
[1013]	valid_0's binary_logloss: 0.430841
roc_auc_score: 0.877077541404848
--------------------------------------------------
Fold: 3
Training until validation scores don't improve for 100 rounds
[300]	valid_0's binary_logloss: 0.442048
[600]	valid_0's binary_logloss: 0.44142
[900]	valid_0's binary_logloss: 0.441142
Early stopping, best iteration is:
[895]	valid_0's binary_logloss: 0.44114
roc_auc_score: 0.8721270953106521
--------------------------------------------------
Fold: 4
Training until validation scores don't improve for 100 rounds
[300]	valid_0's binary_logloss: 0.439466
[600]	valid_0's binary_logloss: 0.438899
Early stopping, best iteration is:
[782]	valid_0's binary_logloss: 0.438824
roc_auc_score: 0.8709229804739002
--------------------------------------------------
Fold: 5
Training until validation scores don't improve for 100 rounds
[300]	valid_0's binary_logloss: 0.427545
Early stopping, best iteration is:
[445]	valid_0's binary_logloss: 0.42739
roc_auc_score: 0.8792290845510382
--------------------------------------------------
Fold: 6
Training until validation scores don't improve for 100 rounds
[300]	valid_0's binary_logloss: 0.440554
[600]	valid_0's binary_logloss: 0.439762
[900]	valid_0's binary_logloss: 0.439505
[1200]	valid_0's binary_logloss: 0.439264
Early stopping, best iteration is:
[1247]	valid_0's binary_logloss: 0.439142
roc_auc_score: 0.872610593872283
--------------------------------------------------
Fold: 7
Training until validation scores don't improve for 100 rounds
[300]	valid_0's binary_logloss: 0.423764
Early stopping, best iteration is:
[414]	valid_0's binary_logloss: 0.423534
roc_auc_score: 0.8806521642373888
--------------------------------------------------
Fold: 8
Training until validation scores don't improve for 100 rounds
[300]	valid_0's binary_logloss: 0.440673
Early stopping, best iteration is:
[409]	valid_0's binary_logloss: 0.440262
roc_auc_score: 0.8708570312002339
--------------------------------------------------
Fold: 9
Training until validation scores don't improve for 100 rounds
[300]	valid_0's binary_logloss: 0.441536
[600]	valid_0's binary_logloss: 0.441034
Early stopping, best iteration is:
[661]	valid_0's binary_logloss: 0.440952
roc_auc_score: 0.8713195377336685
--------------------------------------------------
#LGBM results
lgb_pred_2=clf2.predict_proba(xc_test)[:,1]
Fpr,Tpr,thresholds = roc_curve(yc_test,lgb_pred_2,pos_label=True)
auc = roc_auc_score(yc_test,lgb_pred_2)

print(" ROC_AUC score is ",auc)
lgb_model.fit(xc_train,yc_train)
lgb_pred=lgb_model.predict(xc_test)
print("accuracy score is : ",accuracy_score(yc_test,lgb_pred))
print("Precision is : " ,precision_score(yc_test, lgb_pred))
print("Recall is: " ,recall_score(yc_test, lgb_pred))
print("F1 Score is : " ,f1_score(yc_test, lgb_pred))
print("classification report \n",classification_report(yc_test,lgb_pred))

cnf = confusion_matrix(yc_test,lgb_pred)
sns.heatmap(cnf, annot=True, cmap = "magma")
 ROC_AUC score is  0.8706238059470456
accuracy score is :  0.8030965860353405
Precision is :  0.8258784469242829
Recall is:  0.7681420483787956
F1 Score is :  0.7959646237944981
classification report 
               precision    recall  f1-score   support

         0.0       0.78      0.84      0.81     11658
         1.0       0.83      0.77      0.80     11658

    accuracy                           0.80     23316
   macro avg       0.80      0.80      0.80     23316
weighted avg       0.80      0.80      0.80     23316






<AxesSubplot:>

在这里插入图片描述

plt.rcParams['figure.figsize']  = (12,6)
#plotting the graph for area under curve for representing accuracy of data
plt.plot([0,1],[1,0],'g--')
plt.plot(Fpr,Tpr)
plt.xlabel('False_Positive_Rate')
plt.ylabel('True_Positive_Rate')
plt.title("LGB Classifier model")
plt.show()

在这里插入图片描述

5. 模型预测

模型训练完成后,我们使用测试数据进行预测:

#we can drop column as they are irrelevant and have no effect on our data
df_3 = df_test
df_3.drop(columns=["source"],inplace=True)
df_3.head()
IDGenderAgeRegion_CodeOccupationChannel_CodeVintageCredit_ProductAvg_Account_BalanceIs_ActiveIs_Lead
245725VBENBARO1294102527423660.0NaN
245726CCMEWNKY14318114909255370.0NaN
245727VK3KGA9M13120201412159490.0NaN
245728TT8RPZVC12922103318680700.0NaN
245729SHQZEYTZ02920101916570870.0NaN
# dropping target variable 
#assign the value of y for training and testing phase
xc_pred = df_3.drop(columns=['Is_Lead',"ID"])

#Standardizing value of x by using standardscaler to make the data normally distributed
sc = StandardScaler()
df_xc_pred = pd.DataFrame(sc.fit_transform(xc_pred),columns=xc_pred.columns)
lead_pred_xg=clf2.predict_proba(df_xc_pred)[:,1]
lead_pred_lgb=lgb_model.predict_proba(df_xc_pred)[:,1]
lead_pred_rf=rf_clf.predict_proba(df_xc_pred)[:,1]
print(lead_pred_xg, lead_pred_lgb, lead_pred_rf)
[0.09673516 0.9428428  0.12728807 ... 0.31698707 0.1821623  0.17593904] [0.14278614 0.94357392 0.13603912 ... 0.22251432 0.24186564 0.16873483] [0.17 0.97 0.09 ... 0.5  0.09 0.15]
#Dataframe for lead prediction
lead_pred_lgb= pd.DataFrame(lead_pred_lgb,columns=["Is_Lead"])
lead_pred_xg= pd.DataFrame(lead_pred_xg,columns=["Is_Lead"])
lead_pred_rf= pd.DataFrame(lead_pred_rf,columns=["Is_Lead"])
df_test = df_test.reset_index()
df_test.head()
indexIDGenderAgeRegion_CodeOccupationChannel_CodeVintageCredit_ProductAvg_Account_BalanceIs_ActiveIs_Lead
0245725VBENBARO1294102527423660.0NaN
1245726CCMEWNKY14318114909255370.0NaN
2245727VK3KGA9M13120201412159490.0NaN
3245728TT8RPZVC12922103318680700.0NaN
4245729SHQZEYTZ02920101916570870.0NaN
#Saving ID  and prediction to csv file for XG Model
df_pred_xg=pd.concat([df_test["ID"],lead_pred_xg],axis=1,ignore_index=True)
df_pred_xg.columns = ["ID","Is_Lead"]
print(df_pred_xg.head())
df_pred_xg.to_csv("Credit_Card_Lead_Predictions_final_xg.csv",index=False)

#Saving ID  and prediction to csv file for LGB Model
df_pred_lgb=pd.concat([df_test["ID"],lead_pred_lgb],axis=1,ignore_index=True)
df_pred_lgb.columns = ["ID","Is_Lead"]
print(df_pred_lgb.head())
df_pred_lgb.to_csv("Credit_Card_Lead_Predictions_final_lgb.csv",index=False)

#Saving ID  and prediction to csv file for RF model
df_pred_rf=pd.concat([df_test["ID"],lead_pred_rf],axis=1,ignore_index=True)
df_pred_rf.columns = ["ID","Is_Lead"]
print(df_pred_rf.head())
df_pred_rf.to_csv("Credit_Card_Lead_Predictions_final_rf.csv",index=False)
         ID   Is_Lead
0  VBENBARO  0.096735
1  CCMEWNKY  0.942843
2  VK3KGA9M  0.127288
3  TT8RPZVC  0.052260
4  SHQZEYTZ  0.057762
         ID   Is_Lead
0  VBENBARO  0.142786
1  CCMEWNKY  0.943574
2  VK3KGA9M  0.136039
3  TT8RPZVC  0.084144
4  SHQZEYTZ  0.055887
         ID  Is_Lead
0  VBENBARO     0.17
1  CCMEWNKY     0.97
2  VK3KGA9M     0.09
3  TT8RPZVC     0.12
4  SHQZEYTZ     0.09

6. 模型保存

为了在未来能够方便地加载和使用训练好的模型,我们将模型保存为pickle文件:

import joblib
# 将模型保存为文件中的pickle
joblib.dump(lgb_model,'lgb_model.pkl')
['lgb_model.pkl']

如有遇到问题可以找小编沟通交流哦。另外小编帮忙辅导大课作业,学生毕设等。不限于MapReduce, MySQL, python,java,大数据,模型训练等。 hadoop hdfs yarn spark Django flask flink kafka flume datax sqoop seatunnel echart可视化 机器学习等
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1685325.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

angr使用学习

首先我是直接在kali中安装的&#xff0c;也是边练边学的。 嗯&#xff0c;要在纯净python环境&#xff0c;所以是在 virtualenv 虚拟环境里&#xff0c;也不是特别会用这个&#xff0c;按照教程一步步做的 source venv/bin/activate 进入了对应环境 退出是 deactivate en,ipy…

pdf文件怎么编辑?分享3个专业的pdf软件!

在数字化时代&#xff0c;PDF文件已成为我们工作、学习中的得力助手。然而&#xff0c;面对需要修改的PDF文件&#xff0c;许多人却感到无从下手。今天&#xff0c;就让我们一起探索如何轻松编辑PDF文件&#xff0c;并介绍几款实用的编辑软件&#xff0c;让你轻松应对各种PDF编…

Spring:IoC容器(基于注解管理bean)

1. HelloWorld * 引入依赖* 开启组件扫描* 使用注解定义 Bean* 依赖注入 2.开启组件扫描 <?xml version"1.0" encoding"UTF-8"?> <beans xmlns"http://www.springframework.org/schema/beans"xmlns:xsi"http://www.w3.org/20…

免费开源人脸识别系统,支持RESTful API

简介 CompreFace 是一个免费开源的人脸识别项目&#xff0c;您不需要具备机器学习技能就能安装设置和使用 CompreFace&#xff0c;官方提供了基于 docker 的部署方法&#xff0c;可以方便地部署在本地或者云端服务器上。 CompreFace 提供了 RESTful API&#xff0c;用于人脸识别…

大模型效能工具之智能CommitMessage

01 背景 随着大型语言模型的迅猛增长&#xff0c;各种模型在各个领域的应用如雨后春笋般迅速涌现。在研发全流程的效能方面&#xff0c;也出现了一系列贯穿全流程的提效和质量工具&#xff0c;比如针对成本较高的Oncall&#xff0c;首先出现了高质量的RAG助手&#xff1b;在开…

云原生Kubernetes: K8S 1.26版本 部署KubeSphere

目录 一、实验 1.环境 2.K8S 1.26版本部署HELM 3.K8S 1.26版本 部署KubeSphere 4.安装KubeSphere DevOps 二、问题 1.如何安装Zadig 2.扩展插件Zadig安装失败 3.calico 如何实现不同node通信 4.如何清除docker占用的磁盘空间 5.如何强制删除资源 6.namespace删除不…

linux命令中arj使用

arj 用于创建和管理.arj压缩包 补充说明 arj命令 是 .arj 格式的压缩文件的管理器&#xff0c;用于创建和管理 .arj 压缩包。 语法 arj(参数)参数 操作指令&#xff1a;对 .arj 压缩包执行的操作指令&#xff1b;压缩包名称&#xff1a;指定要操作的arj压缩包名称。 更多…

非关系型数据库NOSQL

文章目录 1. NOSQL 概述2. 相关理论基础2.1 一致性2.2 分区2.3 存储分布2.4 查询模型 3. NOSQL 数据库的种类3.1 文档存储3.2 键值存储3.3 列存储3.3 图存储 4. NOSQL 应用案例和新技术4.1 HBase 数据库4.2 云数据库 GeminiDB 非关系型的数据库 NOSQL (Not Only SQL)是对不同于…

2024.05.23 学习记录

1、 react hooks 面经复习 2、xiaolin coding 计算机网络 复习 3、组件库 subMenu、test测试、tabs组件初步开发完成 4、代码随想录刷题&#xff1a;动态规划 01背包 all

sharded jedis pipelined 执行后 数据并未存入redis

前言 因为历史原因&#xff0c;在某个同步菜单操作的方法中先清除缓存&#xff0c;然后在初始化缓存。本来很正常的逻辑&#xff0c;但是这个清除是db查询获取所有的菜单 然后循环一条条删除 然后在db查询有效的菜单操作 在循环一条条插进去 经统计这个菜单操作大概有个7千个 …

实战Java虚拟机-高级篇

一、GraalVM 什么是GraalVM GraalVM是Oracle官方推出的一款高性能JDK&#xff0c;使用它享受比OpenJDK或者OracleJDK更好的性能。GraalVM的官方网址&#xff1a;https://www.graalvm.org/官方标语&#xff1a;Build faster, smaller, leaner applications。 更低的CPU、内存…

化简资源分配图判断是否发生死锁

目录 1.资源分配图的概念 2.判断是否发生死锁 1.资源分配图的概念 资源分配图表示进程和资源之间的请求关系&#xff0c;例如下图&#xff1a; P代表进程&#xff0c;R代表资源&#xff0c;R方框中 有几个圆球就表示有几个这种资源&#xff0c;在图中&#xff0c;R1指向P1&a…

【加密与解密(第四版)】第十五章笔记

第十五章 专用加密软件 15.1 认识壳 15.2 压缩壳 UPX、ASPack、PECompact 15.3 加密壳 ASProtect(压缩、加密、反跟踪代码、CRC校验、花指令)、Armadillo(穿山甲)、EXECryptor、Themida 15.4 虚拟机保护软件 虚拟机引擎&#xff08;编译器解释器虚拟CPU环境指令系统&#xff…

后端数据库开发JDBC编程Mybatis之用基于XML文件的方式映射SQL语句实操

之前的SQL语句是基于注解 以后开发中一般是一个接口对应一个映射文件 书写映射文件 基本结构 框架 <?xml version"1.0" encoding"UTF-8" ?> <!DOCTYPE mapperPUBLIC "-//mybatis.org//DTD Mapper 3.0//EN""https://mybatis.or…

嵩山是颍水的嵩山

颍水对于嵩山具有特别重要的意义&#xff0c;嵩山的水流大多数汇入了颍河&#xff0c;颍河流域约占登封市总面积88%&#xff0c;从这个角度讲&#xff0c;嵩山就是颍水的嵩山。 再看环嵩山地区&#xff0c;即“嵩山文化圈”&#xff0c;学者们按黄、淮、济分为三个水系区。黄河…

解决IE11通过主机名访问和IP地址访问,CSS渲染效果不一致问题

软件环境 spingboot:版本2.6.13 浏览器&#xff1a;IE11 问题描述 html用css渲染&#xff0c;浏览器输入IP地址访问&#xff0c;和输入主机名访问&#xff0c;效果不一样&#xff0c;如下图&#xff1a; IP地址访问才是我想要的效果&#xff0c;主机访问菜单半透明向下箭头…

如何让大模型更聪明?

如何让大模型更聪明&#xff1f; *随着人工智能技术的飞速发展&#xff0c;大模型在多个领域展现出了前所未有的能力&#xff0c;但它们仍然面临着理解力、泛化能力和适应性等方面的挑战。那么&#xff0c;如何让大模型变得更聪明呢&#xff1f; 方向一&#xff1a;算法创新 …

Web3空投流程分享:如何操作及注意事项

空投&#xff08;Airdrop&#xff09;指通过向特定用户群体免费分发代币&#xff0c;项目方希望能够吸引更多的用户和关注。对于许多刚刚接触加密货币和区块链的新手来说&#xff0c;都会疑惑空投的流程究竟是什么样的呢&#xff1f;又该如何参与其中&#xff1f;本文将为您详细…