llama-factory学习个人记录

news2024/11/16 0:38:01

框架、模型、数据集准备

1.llama-factory部署

# 克隆仓库
git clone https://github.com/hiyouga/LLaMA-Factory.git
# 创建虚拟环境
conda create --name llama_factory python=3.10
# 激活虚拟环境
conda activate llama_factory
# 安装依赖
cd LLaMA-Factory
pip install -r requirements.txt

2.接下来是下载 LLM,可以选择自己常用的 LLM,包括 ChatGLM,BaiChuan,QWen,LLaMA 等,这里我们下载 Baichuan2-13B-Chat模型进行演示:

git lfs install
git clone https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat

在LLaMA-Factory项目中,单显卡可以用命令或web页面训练,多显卡只能用用命令的方式

web页面方式

启动 LLaMA Factory 的 WebUI 页面

CUDA_VISIBLE_DEVICES=0 python src/webui.py

如果报错:Traceback (most recent call last):
  File "/home/bingxing2/ailab/group/ai4agr/wzf/LLM/frame/LLaMA-Factory/src/webui.py", line 13, in <module>
    main()
  File "/home/bingxing2/ailab/group/ai4agr/wzf/LLM/frame/LLaMA-Factory/src/webui.py", line 9, in main
    create_ui().queue().launch(share=gradio_share, server_name=server_name, inbrowser=True)
  File "/home/bingxing2/ailab/scxlab0069/.conda/envs/llama_factory/lib/python3.10/site-packages/gradio/blocks.py", line 2375, in launch
    raise ValueError(
ValueError: When localhost is not accessible, a shareable link must be created. Please set share=True or check your proxy settings to allow access to localhost. 

解决办法:

unset http_proxy

unset https_proxy

启动后的界面如下所示: 

 

界面分上下两部分,上半部分是模型训练的基本配置,有如下参数:

  • 模型名称:可以使用常用的模型,包括 ChatGLM,BaiChuan,QWen,LLaMA 等,我们根据下载的模型选择Baichuan2-13B-Chat。
  • 模型路径:输入框填写我们之前下载的 Baichuan 模型的地址。

微调方法有三种:

  • full:将整个模型都进行微调。
  • freeze:将模型的大部分参数冻结,只对部分参数进行微调。
  • lora:将模型的部分参数冻结,只对部分参数进行微调,但只在特定的层上进行微调。

模型断点(适配器):在未开始微调前为空,微调一次后可以点击刷新断点(适配器)按钮,会得到之前微调过的断点(适配器)。

高级设置可以不用管,使用默认值即可。

下半部分是一个页签窗口,分为Train、Evaluate、Chat、Export四个页签,微调先看Train界面,有如下参数:

训练阶段:选择训练阶段,分为预训练(Pre-Training)、指令监督微调(Supervised Fine-Tuning)、奖励模型训练(Reward Modeling)、PPO 、DPO 五种,这里我们选择指令监督微调(Supervised Fine-Tuning)。

  • Pre-Training:在该阶段,模型会在一个大型数据集上进行预训练,学习基本的语义和概念。
  • Supervised Fine-Tuning:在该阶段,模型会在一个带标签的数据集上进行微调,以提高对特定任务的准确性。
  • Reward Modeling:在该阶段,模型会学习如何从环境中获得奖励,以便在未来做出更好的决策。
  • PPO Training:在该阶段,模型会使用策略梯度方法进行训练,以提高在环境中的表现。
  • DPO Training:在该阶段,模型会使用深度强化学习方法进行训练,以提高在环境中的表现。

数据路径:指训练集数据文件所在的路径,这里的路径默认指的是 LLaMA Factory 目录下的文件夹路径,默认是data目录。

数据集:这里可以选择数据路径中的数据集文件,这里我们选择identity数据集,这个数据集是用来调教 LLM 回答诸如你是谁、你由谁制造这类问题的,里面的数据比较少只有 90 条左右。在微调前我们需要先修改这个文件中的内容,将里面的<NAME>和<AUTHOR>替换成我们的 AI 机器人名称和公司名称。选择了数据集后,可以点击右边的预览数据集按钮来查看数据集的前面几行的内容。

如果采用自行准备的数据集,要在 LLaMA Factory目录下data目录下的dataset_info.json添加新新数据集信息。

 替换后

学习率:学习率越大,模型的学习速度越快,但是学习率太大的话,可能会导致模型在寻找最优解时跳过最优解,学习率太小的话,模型学习速度会很慢,所以这个参数需要根据实际情况进行调整,这里我们使用默认值5e-5。

训练轮数:训练轮数越多,模型的学习效果越好,但是训练轮数太多的话,模型的训练时间会很长,因为我们的训练数据比较少,所以要适当增加训练轮数,这里将值设置为30。默认3.0

最大样本数:每个数据集最多使用的样本数,因为我们的数据量很少只有 90条,所以用默认值就可以了。默认10000

计算类型:这里的fp16 和 bf16 是指数字的数据表示格式,主要用于深度学习训练和推理过程中,以节省内存和加速计算,这里我们选择bf16。默认fp16

学习率调节器:有以下选项可以选择,这里我们选择默认值cosine。

  • linear(线性): 随着训练的进行,学习率将以线性方式减少。
  • cosine(余弦): 这是根据余弦函数来减少学习率的。在训练开始时,学习率较高,然后逐渐降低并在训练结束时达到最低值。
  • cosine_with_restarts(带重启的余弦): 和余弦策略类似,但是在一段时间后会重新启动学习率,并多次这样做。
  • polynomial(多项式): 学习率会根据一个多项式函数来减少,可以设定多项式的次数。
  • constant(常数): 学习率始终保持不变。
  • constant_with_warmup(带预热的常数): 开始时,学习率会慢慢上升到一个固定值,然后保持这个值。
  • inverse_sqrt(反平方根): 学习率会随着训练的进行按照反平方根的方式减少。
  • reduce_lr_on_plateau(在平台上减少学习率): 当模型的进展停滞时(例如,验证误差不再下降),学习率会自动减少。

梯度累积和最大梯度范数:这两个参数通常可以一起使用,以保证在微调大型语言模型时,能够有效地处理大规模数据,同时保证模型训练的稳定性。梯度累积允许在有限的硬件资源上处理更大的数据集,而最大梯度范数则可以防止梯度爆炸,保证模型训练的稳定性,这里我们使用默认值即可。梯度累积默认8,最大梯度范数1.0

断点名称:默认是用时间戳作为断点名称,可以自己修改。

其他参数使用默认值即可。

参数设置完后点击预览命令按钮可以查看本次微调的命令,确认无误后点击开始按钮就开始微调了,因为数据量比较少,大概几分钟微调就完成了。在界面的右下方还可以看到微调过程中损失函数曲线,损失函数的值越低,模型的预测效果通常越好

后端界面

前端界面 

 

4.模型试用

微调完成后,进入Chat页签对微调模型进行试用。首先点击页面上的刷新适配器按钮,然后选择我们最近微调的断点名称,再点击加载模型按钮,等待加载完成后就可以进行对话了,输入微调数据集中的问题,然后来看看微调后的 LLM 的回答吧。

如果觉得微调的模型没有问题,就可以将模型导出并正式使用了,点击Export页签,在导出目录中输入导出的文件夹地址。一般模型文件会比较大,右边的最大分块大小参数用来将模型文件按照大小进行切分,默认是10GB,比如模型文件有 15G,那么切分后就变成 2 个文件,1 个 10G,1 个 5G。设置完成后点击开始导出按钮即可,等导出完成后,就可以在对应目录下看到导出的模型文件了

指令方式

命令运行的脚本地址:LLaMA-Factory/examples/README_zh.md

训练指令 

 1.预训练指令

CUDA_VISIBLE_DEVICES=0 python src/train.py \
    --stage pt \                               # Pre——Training预训练模式
    --model_name_or_path path_to_llama_model \ # 模型地址
    --do_train \                               # 表示进行训练
    --dataset wiki_demo \                      # 使用的数据集
    --finetuning_type lora \                   # 微调的方法
    --lora_target W_pack \                     # LoRA作用模块:Baichuan为W_pack
    --output_dir path_to_pt_checkpoint \       # 断点保存:保存模型断点的位置
    --overwrite_cache \                        # 表示是否覆盖缓存文件
    --per_device_train_batch_size 4 \          # 批处理大小:每块 GPU 上处理的样本数量
    --gradient_accumulation_steps 4 \          # 梯度累积:梯度累积的步数(节省显存的方法)
    --lr_scheduler_type cosine \               # 学习率调节器:采用的学习率调节器名称
    --logging_steps 10 \                       # 日志间隔:每两次日志输出间的更新步数
    --save_steps 1000 \                        # 保存间隔:每两次断点保存间的更新步数
    --learning_rate 5e-5 \                     # 学习率:AdamW优化器的初始学习率
    --num_train_epochs 3.0 \                   # 训练轮数:需要执行的训练总轮数
    --plot_loss \                              # 绘制损失函数图
    --fp16                                     # 计算类型:是否启用fp16或bf16混合精度训练

如果报错:

File "/home/bingxing2/ailab/scxlab0069/.conda/envs/llama_factory/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
  File "/home/bingxing2/ailab/scxlab0069/.conda/envs/llama_factory/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
    return forward_call(*args, **kwargs)
  File "/home/bingxing2/ailab/scxlab0069/.conda/envs/llama_factory/lib/python3.10/site-packages/torch/nn/modules/loss.py", line 1185, in forward
    return F.cross_entropy(input, target, weight=self.weight,
  File "/home/bingxing2/ailab/scxlab0069/.conda/envs/llama_factory/lib/python3.10/site-packages/torch/nn/functional.py", line 3086, in cross_entropy
    return torch._C._nn.cross_entropy_loss(input, target, weight, _Reduction.get_enum(reduction), ignore_index, label_smoothing)
RuntimeError: "nll_loss_out_frame" not implemented for 'Half'

解决办法:把fp16改成bf16 

2.指令监督微调(已跑通)

CUDA_VISIBLE_DEVICES=0 python src/train.py \
    --stage sft \
    --model_name_or_path path_to_llama_model \
    --do_train \
    --dataset alpaca_gpt4_zh \                  
    --template default \              # 提示模板:构建提示词时使用的模板 
    --finetuning_type lora \
    --lora_target W_pack \
    --output_dir path_to_sft_checkpoint \
    --overwrite_cache \
    --per_device_train_batch_size 4 \
    --gradient_accumulation_steps 4 \
    --lr_scheduler_type cosine \
    --logging_steps 10 \
    --save_steps 1000 \
    --learning_rate 5e-5 \
    --num_train_epochs 3.0 \
    --plot_loss \
    --fp16

 3训练奖励模型+PPO

CUDA_VISIBLE_DEVICES=0 python src/train.py \
    --stage rm \
    --model_name_or_path path_to_llama_model \
    --do_train \
    --dataset comparison_gpt4_zh \              # 奖励模型训练数据集
    --template default \
    --finetuning_type lora \
    --lora_target W_pack \
    --resume_lora_training False \              # 接着上次的LoRA权重训练或创建一个新的LoRA权重
    --checkpoint_dir path_to_sft_checkpoint \   # 指令微调模型的断点
    --output_dir path_to_rm_checkpoint \        # 奖励模型的输出位置
    --per_device_train_batch_size 2 \
    --gradient_accumulation_steps 4 \
    --lr_scheduler_type cosine \
    --logging_steps 10 \
    --save_steps 1000 \
    --learning_rate 1e-6 \
    --num_train_epochs 1.0 \
    --plot_loss \
    --fp16

PPO训练(PPO训练需要先进行上一步RM的训练,然后导入微调后模型和RM进行训练输出)

CUDA_VISIBLE_DEVICES=0 python src/train.py \
    --stage ppo \
    --model_name_or_path path_to_llama_model \
    --do_train \
    --dataset alpaca_gpt4_zh \
    --template default \
    --finetuning_type lora \
    --lora_target W_pack \
    --resume_lora_training False \
    --checkpoint_dir path_to_sft_checkpoint \   # 加载指令微调的断点模型
    --reward_model path_to_rm_checkpoint \      # 奖励模型的断点路径
    --output_dir path_to_ppo_checkpoint \       # ppo训练的断点输出位置
    --per_device_train_batch_size 2 \
    --gradient_accumulation_steps 4 \
    --lr_scheduler_type cosine \
    --logging_steps 10 \
    --save_steps 1000 \
    --learning_rate 1e-5 \
    --num_train_epochs 1.0 \
    --plot_loss

 4.DPO训练

(不需要先训练RM,直接导入微调模型进行DPO训练)

CUDA_VISIBLE_DEVICES=0 python src/train.py \
    --stage dpo \
    --model_name_or_path path_to_llama_model \
    --do_train \
    --dataset comparison_gpt4_zh \
    --template default \
    --finetuning_type lora \
    --lora_target W_pack \
    --resume_lora_training False \
    --checkpoint_dir path_to_sft_checkpoint \
    --output_dir path_to_dpo_checkpoint \
    --per_device_train_batch_size 2 \
    --gradient_accumulation_steps 4 \
    --lr_scheduler_type cosine \
    --logging_steps 10 \
    --save_steps 1000 \
    --learning_rate 1e-5 \
    --num_train_epochs 1.0 \
    --plot_loss \
    --fp16
  • 大规模无监督语言模型(LMs)虽然可以学习广泛的世界知识和一些推理技能,但由于其训练的完全无监督性,因此实现对其行为的精确控制是困难的。现有的获得这种可控性的方法是收集人工对模型生成相对质量的标签,并且通过人类反馈强化学习(RLHF)对无监督的 LM 进行微调,以使其与人类偏好相一致。然而,RLHF 是一个复杂且经常不太稳定的过程,它首先拟合一个反应人类偏好的奖励模型,然后通过强化学习对大型无监督 LM 进行微调以最大化评估奖励,并避免与原始模型相差太远。
  • 在本文中,我们使用奖励函数和最优策略间的映射,展示了约束奖励最大化问题完全可以通过单阶段策略训练进行优化 ,从本质上解决了人类偏好数据上的分类问题。我们提出的这个算法称为直接偏好优化(Direct Preference Optimization,DPO)。它具有稳定性、高性能和计算轻量级的特点,不需要拟合奖励模型,不需要在微调时从 LM 中采样,也不需要大量的超参调节。我们的实验表明了 DPO 可以微调 LMs 以对齐人类偏好,甚至比现有方法更好。值得注意的是,用 DPO 进行微调在控制生成结果的情感以及改善摘要和单轮对话的响应质量方面表现出更好的能力,同时在实现和训练时的难度大大降低。

模型评估

CUDA_VISIBLE_DEVICES=0 python src/evaluate.py \
    --model_name_or_path path_to_llama_model \     # base模型
    --finetuning_type lora \ 
    --checkpoint_dir path_to_checkpoint \          # 训练好的检查点
    --template vanilla \                           # 模板类型
    --task ceval \                                 # 任务类型
    --split validation \                           # 指定数据集的划分
    --lang zh \
    --n_shot 5 \                                   # few-shot 学习的示例数
    --batch_size 4                                 # 评估时的批量大小

模型预测

CUDA_VISIBLE_DEVICES=0 python src/train.py \
    --model_name_or_path path_to_llama_model \    # base模型
    --do_predict \                                # 执行预测任务
    --dataset alpaca_gpt4_zh \
    --template default \
    --finetuning_type lora \
    --checkpoint_dir path_to_checkpoint \         # 训练好的检查点
    --output_dir path_to_predict_result \
    --per_device_eval_batch_size 8 \
    --max_samples 100 \                           # 最大样本数:每个数据集最多使用的样本数
    --predict_with_generate                       # 使用生成模式进行预测

微调训练后生成的文件夹path_to_sft_checkpoint中包括:

  • checkpoint-xxx 间隔固定step生成的模型断点
  • runs 文件夹用于tensorboard可视化训练过程
  • lora adapter模型、配置
  • 分词器脚本、配置、模型
  • 训练日志
  • loss曲线

参考:用通俗易懂的方式讲解大模型:一个强大的 LLM 微调工具 LLaMA Factory_llama-factory-CSDN博客

从零开始的LLaMA-Factory的指令增量微调_llamafactory微调-CSDN博客 

LLaMA-Factory参数的解答(命令,单卡,预训练)_llama-factory单机多卡-CSDN博客 

Llama-Factory的baichuan2微调-CSDN博客 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1684784.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Vue——开发前的准备和创建一个vue的工程

文章目录 前言安装 Node js1、下载node.js2、安装node.js3、查看是否安装成功 创建 vue 工程Visual Studio Code 配置目录结构 前言 本篇博客主要讲解Vue开发前的环境配置与一些说明。 安装 Node js 环境需要安装配置一个nodejs 的环境。 vue3 最低nodejs 版本要求为 15.0 1…

2024.5.1学习记录

1、代码随想录&#xff1a;贪心刷题 2、react 高级使用( hoc render、props、函数组件、serState 传送门等) 3、游山玩水

linux部署rustdesk

1.拉取RustDesk镜像 sudo docker image pull rustdesk/rustdesk-server2.启动hbbs服务 sudo docker run --name hbbs -p 21115:21115 -p 21116:21116 -p 21116:21116/udp -p 21118:21118 -v pwd:/root -td --nethost rustdesk/rustdesk-server hbbs3.启动hbbr服务 sudo dock…

sqli-labs靶场

less---11 1.求闭合字符 输入1报错说明存在注入点 存在注入点 2.查库名 使用报错注入查库名 admin” and (select 1 from (select count(*),concat(database(),floor(rand(0)*2))x from information_schema.tables group by x)y)# //floor函数报错 3.查表名 admin and upd…

一、QGroundControl地面站使用介绍

文章目录 环境功能介绍飞行视图规划视图飞机设置分析工具程序设置 连接飞机飞机设置分析工具飞行视图规划任务 总结参考 环境 QGroundControl V4.2.0PX4-Autopilot V1.3.0devGazebo 模拟无人机 功能介绍 飞行视图规划视图飞机设置分析工具程序设置 飞行视图 软件打开后为飞…

OWASP Benchmark | OWASP 基准项目介绍

1. 背景 市面上的静态代码检测SAST工具越来越多&#xff0c;除了业界比较知名的Coverity、Fortify、CheckMax&#xff0c;还有CodeQL、SonarQube、CppCheck等&#xff0c;国内也涌现了一大波检测工具&#xff0c;如鸿渐SAST、奇安信代码卫士、北大Cobot、酷德啄木鸟等&#xf…

KT142C语音芯片音量详细汇总 包含记忆 低功耗的音量_开机音量

关于KT142C语音芯片sop16的音量详细汇总&#xff0c;包含记忆&#xff0c;低功耗唤醒之后的音量&#xff0c;开机音量 芯片的音量是分为三部分&#xff0c;详见手册的“3.4.2”章节 串口发送指令设置&#xff0c;但是掉电或者进入低功耗被唤醒&#xff0c;这两种情况都会恢复到…

nvm介绍、下载、安装、配置及使用,(Node Version Manager)nodejs版本管理切换工具

1、介绍nvm 在Web前端项目开发过程中&#xff0c;由于各种前端框架、插件 以及 Nodejs、Npm 的飞速更新&#xff0c;在项目新开发 或 对老项目进行更新维护时&#xff0c;有些项目版本的配置 和 当前Node、Npm环境不匹配&#xff0c;导致运行报错&#xff0c;甚至都无法启动。…

代码随想录算法训练营第二天| 977.有序数组的平方 、209.长度最小的子数组、 59.螺旋矩阵II

977. 有序数组的平方 题目链接&#xff1a;977. 有序数组的平方 文档讲解&#xff1a;代码随想录 状态&#xff1a;so easy 刚开始看到题目第一反应就是平方之后进行排序&#xff0c;数据量在 1 0 4 10^4 104&#xff0c;可以使用O(nlogn)的排序。但是更好的方式是使用双指针&a…

Java面试八股之什么是死锁

什么是死锁 死锁&#xff08;Deadlock&#xff09;是多线程编程中的一种常见问题&#xff0c;特别是在涉及到资源共享和同步的时候。具体来说&#xff0c;死锁是指两个或两个以上的线程在执行过程中&#xff0c;由于互相持有并等待对方释放的资源&#xff0c;而导致所有线程都…

Centos7.9上安装Oracle 11gR2 RAC 三节点(ASMlib管理asm磁盘)

服务器规划 OS 规格 主机名 IP VIP private IP scanip centos 7.9 1C4G racdb01 192.168.40.165 192.168.183.165 192.168.40.16 192.168.40.200 centos 7.9 1C4G racdb02 192.168.40.175 192.168.183.175 192.168.40.17 192.168.40.200 centos 7.9 1C4G…

php题解(巩固基础知识)代码审计

1.[NISACTF 2022]easyssrf 1&#xff09;进入环境后&#xff0c;他给了一个上url个文本框 2&#xff09;看了源码&#xff0c;没啥用&#xff0c;那就直接跟着它提示走&#xff0c;输入一个网址http://127.0.0.1/flag.php 3&#xff09;回显又给了/fl4g&#xff0c;直接file…

微服务:Ribbon负载均衡与加载时机修改

Ribbon 负载均衡 执行流程 负载均衡策略 调整负载均衡方案&#xff1a; 配置类中&#xff08;全局&#xff09;&#xff1a; // 负载均衡策略Beanpublic IRule randomRule() {return new RandomRule();}yaml配置 userservice: # 给某个微服务配置负载均衡规则&#xff…

【UE HTTP】“BlueprintHTTP Server - A Web Server for Unreal Engine”插件使用记录

1. 在商城中下载“BlueprintHTTP Server - A Web Server for Unreal Engine”插件 该插件的主要功能有如下3点&#xff1a; &#xff08;1&#xff09;监听客户端请求。 &#xff08;2&#xff09;可以将文件直接从Unreal Engine应用程序提供到Web。 &#xff08;3&#xff…

elementui中 表格使用树形数据且固定一列时展开子集移入时背景色不全问题

原来的效果 修改后实现效果 解决- 需要修改elementui的依赖包中lib/element-ui.common.js中的源码 将js中此处代码改完下面的代码 watch: {// dont trigger getter of currentRow in getCellClass. see https://jsfiddle.net/oe2b4hqt/// update DOM manually. see https:/…

Oracle体系结构初探:数据库启动与停止

往期内容 参数管理 控制文件添加 启动 在启动Oracle数据库时&#xff0c;我们一般会使用如下命令&#xff1a; startup 虽然命令只有一个&#xff0c;但其中却是经历了3个阶段&#xff0c;从下面执行 startup 命令返回也可以看出来。 总结为3个阶段&#xff1a; nomount&…

【Unity2D 2022:Cinemachine】相机跟随与地图边界

一、导入Cinemachine工具包 1. 点击Window-Package Manager&#xff0c;进入包管理界面 2. 点击All&#xff0c;找到Cinemachine工具包&#xff0c;点击Install 二、相机跟随角色 1. 选中Main Camera&#xff0c;点击Component-Cinemachine-CinemachineBrain&#xff0c;新建…

【stm32/CubeMX、HAL库】嵌入式实验五:定时器(2)|PWM输出

参考&#xff1a; 【【正点原子】手把手教你学STM32CubeIDE开发】 https://www.bilibili.com/video/BV1Wp42127Cx/?p13&share_sourcecopy_web&vd_source9332b8fc5ea8d349a54c3989f6189fd3 《嵌入式系统基础与实践》刘黎明等编著&#xff0c;第九章定时器&#xff0c…

亚洲AI核心资产,商汤科技!全球最优秀的医疗大模型平台——“大医”。

今天会给大家详解下商汤的AI产品“大医”。 —、什么是“大医”&#xff1f;&#xff08;行业模型&#xff09; “日日新.大医”是一款具备创新精神的医疗健康领域大语言模型。该模型通过内置的“场景集市”模块&#xff0c;提供了13个预设医疗场景的应用&#xff0c;同时还能…

Golang——reflect(反射)

反射是指在程序运行期间对程序本身进行访问和修改的能力。 一. 变量的内在机制 变量包含类型信息和值信息类型信息&#xff1a;是静态的元信息&#xff0c;是预先定义好的值信息&#xff1a;是程序运行过程中动态改变的 二. 反射的使用 reflect包封装了反射相关的方法获取类型…