TCP服务器实现将客服端发送的信息广播发送(使用内核链表管理客户端信息)

news2024/11/26 20:50:27

目录

1.服务器端实现思路

2.服务器端代码

3.客户端代码

4.内核链表代码

5.运行格式

一、服务器端

二、客户端

6.效果


1.服务器端实现思路

  1. Tcp广播服务初始化

  2. 等待客户端连接

  3. 广播发送

2.服务器端代码

#include "list.h"
#include <signal.h>
#define EXIT_MASK "exit"

pthread_mutex_t mutex;
volatile int is_down = 0;

void *Tcp_Pthreads_Broadcast(void *arg)
{
    service_inf_poi sip = (service_inf_poi)arg;
    // 设置线程分离
    if (pthread_detach(pthread_self()) != 0)
    {
        perror("pthread_detach error");
        close(sip->ser_fd);
        pthread_exit((void *)(-1));
    }
    char msg[MSG_MAX_LEN] = "\0";
    while (!is_down)
    {
        memset(msg, 0, sizeof(char) * MSG_MAX_LEN);
        // 保存当前已经连接的客户端的IP地址和套接字
        int cur_client_id = sip->cur_client_node->client_own_id;
        char cur_client_ip_addr[IP_ADDR_LEN] = "\0";
        strcpy(cur_client_ip_addr, sip->cur_client_node->client_ip_addr);
        // 根据套接字读取数据
        int read_ret = read(cur_client_id, msg, MSG_MAX_LEN);
        if (read_ret == -1)
        {
            perror("read error...");
            close(sip->ser_fd);
            pthread_exit((void *)(-1));
        }
        else if (read_ret == 0 || strcmp(msg, EXIT_MASK) == 0)
        {
            printf("%s 断开连接\n", cur_client_ip_addr);
            client_link pos = NULL;
            // 删除该客户端节点,并结束该进程
            list_for_each_entry(pos, &sip->client_list_head->little_pointer_head, little_pointer_head)
            {
                if (pos->client_own_id == cur_client_id) // 根据套接字 号码来找
                {
                    break;
                }
            }
            pthread_mutex_lock(&mutex); // 上锁
            list_del(&pos->little_pointer_head);
            pthread_mutex_unlock(&mutex); // 解锁
            printf("删除节点成功\n\n");

            // 判断当前是否有客户
            if (list_empty(&sip->client_list_head->little_pointer_head) == 1 || sip->client_list_head == NULL || &sip->client_list_head->little_pointer_head == NULL)
            {
                printf("================当前无客户连接======================\n\n");
                printf("服务器端即将断开!!!\n\n");
                // 退出,并释放,结束服务器端
                pthread_mutex_lock(&mutex); // 上锁
                Tcp_Server_Broadcast_Free(sip);
                is_down = 1;
                close(sip->ser_fd);
                pthread_mutex_unlock(&mutex); // 解锁
                if (kill(getpid(), SIGKILL) == -1)
                {
                    perror("kill error...");
                    pthread_exit((void *)-1);
                }
                break;
            }
            else
            {
                pos = NULL;
                printf("=============当前客户端列表==========================\n");
                list_for_each_entry(pos, &sip->client_list_head->little_pointer_head, little_pointer_head)
                {
                    printf("%s\n", pos->client_ip_addr);
                }
                printf("===================================================\n\n");
            }
            break; // 结束当前线程
        }
        else
        {
            printf("%s : %s\n", cur_client_ip_addr, msg);
            // 广播转发
            client_link pos = NULL;
            // 将前16个字节作为ip地址
            char new_msg[MSG_MAX_LEN] = "\0";
            sprintf(new_msg, "%s:【%s】", cur_client_ip_addr, msg);
            printf("new_msg = %s\n", new_msg);
            list_for_each_entry(pos, &sip->client_list_head->little_pointer_head, little_pointer_head)
            {
                if (strcmp(cur_client_ip_addr, pos->client_ip_addr) != 0) // 自己不转发给自己
                {
                    if (write(pos->client_own_id, new_msg, strlen(new_msg)) == -1)
                    {
                        perror("write error...");
                        break;
                    }
                    printf("转发给:%s成功!\n", pos->client_ip_addr);
                }
            }
            printf("\n");
        }
    }
    pthread_exit((void *)0);
    return NULL;
}

void Tcp_Server_Broadcast_Free(service_inf_poi sip)
{
    free(sip);
    return;
}
// 创建新节点
client_link Create_New_Client_Node()
{
    client_link new_client_node = (client_link)malloc(sizeof(client_node));
    if (new_client_node == (client_link)NULL)
    {
        perror("malloc new_big_node error");
        return (client_link)-1;
    }
    memset(new_client_node, 0, sizeof(client_node));
    INIT_LIST_HEAD(&new_client_node->little_pointer_head);
    return new_client_node;
}

// Tcp广播服务初始化
service_inf_poi Tcp_Server_Broadcast_Init(int ser_port)
{
    service_inf_poi sip = (service_inf_poi)malloc(sizeof(service_inf));
    if (sip == (service_inf_poi)NULL)
    {
        perror("malloc error...");
        return (service_inf_poi)-1;
    }
    memset(sip, 0, sizeof(service_inf));
    if ((sip->ser_fd = socket(AF_INET, SOCK_STREAM, 0)) == -1)
    {
        perror("socket error...");
        return (service_inf_poi)-1;
    }
    // 创建客户端头结点
    sip->client_list_head = Create_New_Client_Node();
    if (sip->client_list_head == (client_link)-1)
    {
        return (service_inf_poi)-1;
    }
    // 设置基本信息
    struct sockaddr_in ser_inf;
    memset(&ser_inf, 0, sizeof(ser_inf));
    ser_inf.sin_family = AF_INET;
    ser_inf.sin_port = htons(ser_port); // 将小端变成大端
    ser_inf.sin_addr.s_addr = htonl(INADDR_ANY);
    // 绑定
    if (bind(sip->ser_fd, (struct sockaddr *)&ser_inf, sizeof(ser_inf)) == -1)
    {
        perror("bind error...");
        return (service_inf_poi)-1;
    }
    // 监听
    if (listen(sip->ser_fd, CLIENT_MAX_CONNECT_NUM / 4) == -1) // 最大等待队列是CLIENT_MAX_CONNECT_NUM / 4个
    {
        perror("listen error...");
        return (service_inf_poi)-1;
    }

    // 初始化互斥锁
    if (pthread_mutex_init(&mutex, NULL))
    {
        perror("pthread_mutex error...\n");
        return (service_inf_poi)-1;
    }
    return sip;
}

// 等待客户端连接
int Waiting_For_Connnect(service_inf_poi sip)
{
    struct sockaddr_in client_inf;
    int len = sizeof(client_inf);
    while (1)
    {
        memset(&client_inf, 0, len);
        int new_client_fd = accept(sip->ser_fd, (struct sockaddr *)&client_inf, &len);
        if (new_client_fd == -1)
        {
            perror("accept error...");
            return -1;
        }
        printf("%s已经连接服务器\n", inet_ntoa(client_inf.sin_addr));
        // 创建新节点
        client_link new_client_node = Create_New_Client_Node();
        if (new_client_node == (client_link)-1)
        {
            return -1;
        }
        // 将ip和新的套接字 赋值
        new_client_node->client_own_id = new_client_fd;
        strcpy(new_client_node->client_ip_addr, inet_ntoa(client_inf.sin_addr));
        sip->cur_client_node = new_client_node; // 保存当前的结点
        // 将新节点插入到客户端列表中
        list_add_tail(&new_client_node->little_pointer_head, &sip->client_list_head->little_pointer_head);
        printf("添加头结点成功!\n\n");
        printf("======================当前客户端列表=======================\n");
        client_link pos;
        list_for_each_entry(pos, &sip->client_list_head->little_pointer_head, little_pointer_head)
        {
            printf("%s\n", pos->client_ip_addr);
        }
        printf("==========================================================\n\n");
        // 创建线程进行广播发送
        pthread_t pid;
        if (pthread_create(&pid, NULL, Tcp_Pthreads_Broadcast, sip) != 0)
        {
            perror("pthread_create error...");
            return -1;
        }
    }

    return 0;
}

int main(int argc, char *argv[])
{
    if (argc != 2)
        return -1;
    service_inf_poi sip = Tcp_Server_Broadcast_Init(atoi(argv[1]));
    if (sip == (service_inf_poi)-1)
    {
        printf("Tcp服务器初始化失败!\n");
        return -1;
    }
    else
    {
        printf("Tcp服务器初始化成功!正在等待接受数据.......\n");
    }
    Waiting_For_Connnect(sip);
    return 0;
}

3.客户端代码

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include <fcntl.h>
#include <pthread.h>
#include <arpa/inet.h>
#include <netinet/in.h>
#include <signal.h>

#define IP_ADDR_LEN 16
#define MSG_MAX_LEN 256
#define CLIENT_MAX_CONNECT_NUM 100
#define EXIT_MASK "exit"

volatile int is_over = 0;

int Client_Init(char *server_ip_addr, int server_prot_num);
int Client_Running(int cli_fd);
void *Send_Msg(void *arg);
void *Rec_Msg(void *arg);

void *Send_Msg(void *arg)
{
    int *client_fd = (int *)(arg);
    int cli_fd = *(client_fd);
    printf("Send_msg = %d\n", cli_fd);

    if (pthread_detach(pthread_self()) != 0)
    {
        perror("pthread_detach error");
        close(cli_fd);
        free(client_fd);
        pthread_exit((void *)(-1));
    }
    char msg[MSG_MAX_LEN] = "\0";
    while (!is_over)
    {
        memset(msg, 0, MSG_MAX_LEN);
        printf("请输入要发送的数据:");
        scanf("%s", msg);

        if (write(cli_fd, msg, strlen(msg)) == -1)
        {
            perror("Send_Msg:write error...");
            close(cli_fd);
            free(client_fd);
            pthread_exit((void *)-1);
        }
        if (strcmp(EXIT_MASK, msg) == 0)
        {
            printf("我要断了\n");
            is_over = 1;
            if (kill(getpid(), SIGKILL) == -1)
            {
                perror("kill error...");
                close(cli_fd);
                free(client_fd);
                pthread_exit((void *)-1);
            }
            break;
        }
    }
    close(cli_fd);
    free(client_fd);
    pthread_exit((void *)0);
    return NULL;
}
void *Rec_Msg(void *arg)
{
    int cli_fd = *((int *)arg);
    if (pthread_detach(pthread_self()) != 0)
    {
        perror("pthread_detach error");
        close(cli_fd);
        pthread_exit((void *)(-1));
    }
    char msg[MSG_MAX_LEN] = "\0";
    while (!is_over)
    {
        memset(msg, 0, MSG_MAX_LEN);
        int read_ret = read(cli_fd, msg, MSG_MAX_LEN);
        if (read_ret == -1)
        {
            perror("write error...");
            close(cli_fd);
            pthread_exit((void *)-1);
        }
        else if (read_ret != 0)
        {
            printf("\n%s\n", msg);
        }
    }
    close(cli_fd);
    pthread_exit((void *)0);
    return NULL;
}

int Client_Init(char *server_ip_addr, int server_prot_num)
{
    // 创建套接字
    int cli_fd = socket(AF_INET, SOCK_STREAM, 0);
    if (cli_fd == -1)
    {
        perror("socket error...");
        return -1;
    }
    else
    {
        printf("socket success %d\n", cli_fd);
    }
    struct sockaddr_in cli_inf;
    memset(&cli_inf, 0, sizeof(cli_inf));

    cli_inf.sin_family = AF_INET;
    cli_inf.sin_addr.s_addr = inet_addr(server_ip_addr);
    cli_inf.sin_port = htons(server_prot_num);
    // 连接
    if (connect(cli_fd, (struct sockaddr *)&cli_inf, sizeof(cli_inf)) == -1)
    {
        perror("connect error...");
        close(cli_fd);
        return -1;
    }
    else
    {
        printf("连接成功!\n");
    }
    return cli_fd;
}

int Client_Running(int cli_fd)
{
    int *client_fd = (int *)malloc(sizeof(int));
    *client_fd = cli_fd;
    pthread_t pid_send, pid_rec;
    if (pthread_create(&pid_send, NULL, Send_Msg, client_fd) != 0)
    {
        perror("pthread_create error...");
        return -1;
    }
    if (pthread_create(&pid_rec, NULL, Rec_Msg, client_fd) != 0)
    {
        perror("pthread_create error...");
        return -1;
    }
    pause();
    return 0;
}

// a.out ip port
int main(int argc, char *argv[])
{
    if (argc != 3)
    {
        printf("输入的参数不对!\n");
        return -1;
    }
    int cli_fd = Client_Init(argv[1], atoi(argv[2]));
    printf("Client_Init success %d\n", cli_fd);

    if (cli_fd == -1)
    {
        printf("Client Init error\n");
        return -1;
    }
    if (Client_Running(cli_fd) == -1)
    {
        printf("Client_Running error\n");
        return -1;
    }
    return 0;
}

4.内核链表代码

#ifndef _LINUX_LIST_H
#define _LINUX_LIST_H

#include <stdio.h>
#include <stdbool.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <fcntl.h>
#include <pthread.h>
#include <arpa/inet.h>
#include <netinet/in.h>

#define IP_ADDR_LEN 16
#define MSG_MAX_LEN 256
#define CLIENT_MAX_CONNECT_NUM 100

/*
 * Simple doubly linked list implementation.
 *
 * Some of the internal functions ("__xxx") are useful when
 * manipulating whole lists rather than single entries, as
 * sometimes we already know the next/prev entries and we can
 * generate better code by using them directly rather than
 * using the generic single-entry routines.
 */

#define LIST_HEAD_INIT(name) \
	{                        \
		&(name), &(name)     \
	}

#define LIST_HEAD(name) \
	struct list_head name = LIST_HEAD_INIT(name)

struct list_head
{
	struct list_head *next, *prev;
};

typedef struct big_list_node
{
	int client_own_id;				  // 客户端的套接字
	char client_ip_addr[IP_ADDR_LEN]; // 客户端的ip地址
	struct list_head little_pointer_head;
} client_node, *client_link;

typedef struct tcp_service_inf
{
	int ser_fd;					  // 服务端的套接字
	client_link cur_client_node;  // 存放当前客户端的结点
	client_link client_list_head; // 存放客户端链表的头结点
} service_inf, *service_inf_poi;

client_link Create_New_Client_Node();
service_inf_poi Tcp_Server_Broadcast_Init(int ser_port);
client_link Create_Client_Node();
int Waiting_For_Connnect(service_inf_poi sip);
void Tcp_Server_Broadcast_Free(service_inf_poi sip);
void *Tcp_Pthreads_Broadcast(void *arg);


static inline void INIT_LIST_HEAD(struct list_head *list)
{
	list->next = list; // 游离节点指向小头
	list->prev = list;
}

#ifdef CONFIG_DEBUG_LIST
extern bool __list_add_valid(struct list_head *new,
							 struct list_head *prev,
							 struct list_head *next);
extern bool __list_del_entry_valid(struct list_head *entry);
#else
static inline bool __list_add_valid(struct list_head *new,
									struct list_head *prev,
									struct list_head *next)
{
	return true;
}
static inline bool __list_del_entry_valid(struct list_head *entry)
{
	return true;
}
#endif

/*
 * Insert a new entry between two known consecutive entries.
 *
 * This is only for internal list manipulation where we know
 * the prev/next entries already!
 */
static inline void __list_add(struct list_head *new,
							  struct list_head *prev,
							  struct list_head *next)
{
	if (!__list_add_valid(new, prev, next))
		return;

	next->prev = new;
	new->next = next;
	new->prev = prev;
	prev->next = new;
}

/**
 * list_add - add a new entry
 * @new: new entry to be added
 * @head: list head to add it after
 *
 * Insert a new entry after the specified head.
 * This is good for implementing stacks.
 */
static inline void list_add(struct list_head *new, struct list_head *head)
{
	__list_add(new, head, head->next);
}

/**
 * list_add_tail - add a new entry
 * @new: new entry to be added
 * @head: list head to add it before
 *
 * Insert a new entry before the specified head.
 * This is useful for implementing queues.
 */
static inline void list_add_tail(struct list_head *new, struct list_head *head)
{
	__list_add(new, head->prev, head);
}

/*
 * Delete a list entry by making the prev/next entries
 * point to each other.
 *
 * This is only for internal list manipulation where we know
 * the prev/next entries already!
 */
static inline void __list_del(struct list_head *prev, struct list_head *next)
{
	next->prev = prev;
	prev->next = next;
}

/**
 * list_del - deletes entry from list.
 * @entry: the element to delete from the list.
 * Note: list_empty() on entry does not return true after this, the entry is
 * in an undefined state.
 */
static inline void __list_del_entry(struct list_head *entry)
{
	if (!__list_del_entry_valid(entry))
		return;

	__list_del(entry->prev, entry->next);
}

static inline void list_del(struct list_head *entry)
{
	__list_del_entry(entry);
	entry->next = NULL;
	entry->prev = NULL;
}

/**
 * list_replace - replace old entry by new one
 * @old : the element to be replaced
 * @new : the new element to insert
 *
 * If @old was empty, it will be overwritten.
 */
static inline void list_replace(struct list_head *old,
								struct list_head *new)
{
	new->next = old->next;
	new->next->prev = new;
	new->prev = old->prev;
	new->prev->next = new;
}

static inline void list_replace_init(struct list_head *old,
									 struct list_head *new)
{
	list_replace(old, new);
	INIT_LIST_HEAD(old);
}

/**
 * list_del_init - deletes entry from list and reinitialize it.
 * @entry: the element to delete from the list.
 */
static inline void list_del_init(struct list_head *entry)
{
	__list_del_entry(entry);
	INIT_LIST_HEAD(entry);
}

/**
 * list_move - delete from one list and add as another's head
 * @list: the entry to move
 * @head: the head that will precede our entry
 */
static inline void list_move(struct list_head *list, struct list_head *head)
{
	__list_del_entry(list);
	list_add(list, head);
}

/**
 * list_move_tail - delete from one list and add as another's tail
 * @list: the entry to move
 * @head: the head that will follow our entry
 */
static inline void list_move_tail(struct list_head *list,
								  struct list_head *head)
{
	__list_del_entry(list);
	list_add_tail(list, head);
}

/**
 * list_is_last - tests whether @list is the last entry in list @head
 * @list: the entry to test
 * @head: the head of the list
 */
static inline int list_is_last(const struct list_head *list,
							   const struct list_head *head)
{
	return list->next == head;
}

/**
 * list_empty - tests whether a list is empty
 * @head: the list to test.
 */
static inline int list_empty(const struct list_head *head)
{
	return head->next == head;
}

/**
 * list_empty_careful - tests whether a list is empty and not being modified
 * @head: the list to test
 *
 * Description:
 * tests whether a list is empty _and_ checks that no other CPU might be
 * in the process of modifying either member (next or prev)
 *
 * NOTE: using list_empty_careful() without synchronization
 * can only be safe if the only activity that can happen
 * to the list entry is list_del_init(). Eg. it cannot be used
 * if another CPU could re-list_add() it.
 */
static inline int list_empty_careful(const struct list_head *head)
{
	struct list_head *next = head->next;
	return (next == head) && (next == head->prev);
}

/**
 * list_rotate_left - rotate the list to the left
 * @head: the head of the list
 */
static inline void list_rotate_left(struct list_head *head)
{
	struct list_head *first;

	if (!list_empty(head))
	{
		first = head->next;
		list_move_tail(first, head);
	}
}

/**
 * list_is_singular - tests whether a list has just one entry.
 * @head: the list to test.
 */
static inline int list_is_singular(const struct list_head *head)
{
	return !list_empty(head) && (head->next == head->prev);
}

static inline void __list_cut_position(struct list_head *list,
									   struct list_head *head, struct list_head *entry)
{
	struct list_head *new_first = entry->next;
	list->next = head->next;
	list->next->prev = list;
	list->prev = entry;
	entry->next = list;
	head->next = new_first;
	new_first->prev = head;
}

/**
 * list_cut_position - cut a list into two
 * @list: a new list to add all removed entries
 * @head: a list with entries
 * @entry: an entry within head, could be the head itself
 *	and if so we won't cut the list
 *
 * This helper moves the initial part of @head, up to and
 * including @entry, from @head to @list. You should
 * pass on @entry an element you know is on @head. @list
 * should be an empty list or a list you do not care about
 * losing its data.
 *
 */
static inline void list_cut_position(struct list_head *list,
									 struct list_head *head, struct list_head *entry)
{
	if (list_empty(head))
		return;
	if (list_is_singular(head) &&
		(head->next != entry && head != entry))
		return;
	if (entry == head)
		INIT_LIST_HEAD(list);
	else
		__list_cut_position(list, head, entry);
}

static inline void __list_splice(const struct list_head *list,
								 struct list_head *prev,
								 struct list_head *next)
{
	struct list_head *first = list->next;
	struct list_head *last = list->prev;

	first->prev = prev;
	prev->next = first;

	last->next = next;
	next->prev = last;
}

/**
 * list_splice - join two lists, this is designed for stacks
 * @list: the new list to add.
 * @head: the place to add it in the first list.
 */
static inline void list_splice(const struct list_head *list,
							   struct list_head *head)
{
	if (!list_empty(list))
		__list_splice(list, head, head->next);
}

/**
 * list_splice_tail - join two lists, each list being a queue
 * @list: the new list to add.
 * @head: the place to add it in the first list.
 */
static inline void list_splice_tail(struct list_head *list,
									struct list_head *head)
{
	if (!list_empty(list))
		__list_splice(list, head->prev, head);
}

/**
 * list_splice_init - join two lists and reinitialise the emptied list.
 * @list: the new list to add.
 * @head: the place to add it in the first list.
 *
 * The list at @list is reinitialised
 */
static inline void list_splice_init(struct list_head *list,
									struct list_head *head)
{
	if (!list_empty(list))
	{
		__list_splice(list, head, head->next);
		INIT_LIST_HEAD(list);
	}
}

/**
 * list_splice_tail_init - join two lists and reinitialise the emptied list
 * @list: the new list to add.
 * @head: the place to add it in the first list.
 *
 * Each of the lists is a queue.
 * The list at @list is reinitialised
 */
static inline void list_splice_tail_init(struct list_head *list,
										 struct list_head *head)
{
	if (!list_empty(list))
	{
		__list_splice(list, head->prev, head);
		INIT_LIST_HEAD(list);
	}
}

// 在stddef.h中
#define offsetof(TYPE, MEMBER) ((size_t) & ((TYPE *)0)->MEMBER)
// 在kernel.h中
#define container_of(ptr, type, member) ({                      \
        const typeof( ((type *)0)->member ) *__mptr = (ptr);    \
        (type *)( (char *)__mptr - offsetof(type,member) ); })

/**
 * list_entry - get the struct for this entry
 * @ptr:	the &struct list_head pointer.
 * @type:	the type of the struct this is embedded in.
 * @member:	the name of the list_head within the struct.
 */
#define list_entry(ptr, type, member) \
	container_of(ptr, type, member)

/**
 * list_first_entry - get the first element from a list
 * @ptr:	the list head to take the element from.
 * @type:	the type of the struct this is embedded in.
 * @member:	the name of the list_head within the struct.
 *
 * Note, that list is expected to be not empty.
 */
#define list_first_entry(ptr, type, member) \
	list_entry((ptr)->next, type, member)

/**
 * list_last_entry - get the last element from a list
 * @ptr:	the list head to take the element from.
 * @type:	the type of the struct this is embedded in.
 * @member:	the name of the list_head within the struct.
 *
 * Note, that list is expected to be not empty.
 */
#define list_last_entry(ptr, type, member) \
	list_entry((ptr)->prev, type, member)

/**
 * list_first_entry_or_null - get the first element from a list
 * @ptr:	the list head to take the element from.
 * @type:	the type of the struct this is embedded in.
 * @member:	the name of the list_head within the struct.
 *
 * Note that if the list is empty, it returns NULL.
 */
#define list_first_entry_or_null(ptr, type, member) ({        \
	struct list_head *head__ = (ptr);                         \
	struct list_head *pos__ = head__->next;                   \
	pos__ != head__ ? list_entry(pos__, type, member) : NULL; \
})

/**
 * list_next_entry - get the next element in list
 * @pos:	the type * to cursor
 * @member:	the name of the list_head within the struct.
 */
#define list_next_entry(pos, member) \
	list_entry((pos)->member.next, typeof(*(pos)), member)

/**
 * list_prev_entry - get the prev element in list
 * @pos:	the type * to cursor
 * @member:	the name of the list_head within the struct.
 */
#define list_prev_entry(pos, member) \
	list_entry((pos)->member.prev, typeof(*(pos)), member)

/**
 * list_for_each	-	iterate over a list
 * @pos:	the &struct list_head to use as a loop cursor.
 * @head:	the head for your list.
 */
#define list_for_each(pos, head) \
	for (pos = (head)->next; pos != (head); pos = pos->next)

/**
 * list_for_each_prev	-	iterate over a list backwards
 * @pos:	the &struct list_head to use as a loop cursor.
 * @head:	the head for your list.
 */
#define list_for_each_prev(pos, head) \
	for (pos = (head)->prev; pos != (head); pos = pos->prev)

/**
 * list_for_each_safe - iterate over a list safe against removal of list entry
 * @pos:	the &struct list_head to use as a loop cursor.
 * @n:		another &struct list_head to use as temporary storage
 * @head:	the head for your list.
 */
#define list_for_each_safe(pos, n, head)                   \
	for (pos = (head)->next, n = pos->next; pos != (head); \
		 pos = n, n = pos->next)

/**
 * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry
 * @pos:	the &struct list_head to use as a loop cursor.
 * @n:		another &struct list_head to use as temporary storage
 * @head:	the head for your list.
 */
#define list_for_each_prev_safe(pos, n, head) \
	for (pos = (head)->prev, n = pos->prev;   \
		 pos != (head);                       \
		 pos = n, n = pos->prev)

/**
 * list_for_each_entry	-	iterate over list of given type
 * @pos:	the type * to use as a loop cursor.
 * @head:	the head for your list.
 * @member:	the name of the list_head within the struct.
 */
#define list_for_each_entry(pos, head, member)               \
	for (pos = list_first_entry(head, typeof(*pos), member); \
		 &pos->member != (head);                             \
		 pos = list_next_entry(pos, member))

/**
 * list_for_each_entry_reverse - iterate backwards over list of given type.
 * @pos:	the type * to use as a loop cursor.
 * @head:	the head for your list.
 * @member:	the name of the list_head within the struct.
 */
#define list_for_each_entry_reverse(pos, head, member)      \
	for (pos = list_last_entry(head, typeof(*pos), member); \
		 &pos->member != (head);                            \
		 pos = list_prev_entry(pos, member))

/**
 * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue()
 * @pos:	the type * to use as a start point
 * @head:	the head of the list
 * @member:	the name of the list_head within the struct.
 *
 * Prepares a pos entry for use as a start point in list_for_each_entry_continue().
 */
#define list_prepare_entry(pos, head, member) \
	((pos) ?: list_entry(head, typeof(*pos), member))

/**
 * list_for_each_entry_continue - continue iteration over list of given type
 * @pos:	the type * to use as a loop cursor.
 * @head:	the head for your list.
 * @member:	the name of the list_head within the struct.
 *
 * Continue to iterate over list of given type, continuing after
 * the current position.
 */
#define list_for_each_entry_continue(pos, head, member) \
	for (pos = list_next_entry(pos, member);            \
		 &pos->member != (head);                        \
		 pos = list_next_entry(pos, member))

/**
 * list_for_each_entry_continue_reverse - iterate backwards from the given point
 * @pos:	the type * to use as a loop cursor.
 * @head:	the head for your list.
 * @member:	the name of the list_head within the struct.
 *
 * Start to iterate over list of given type backwards, continuing after
 * the current position.
 */
#define list_for_each_entry_continue_reverse(pos, head, member) \
	for (pos = list_prev_entry(pos, member);                    \
		 &pos->member != (head);                                \
		 pos = list_prev_entry(pos, member))

/**
 * list_for_each_entry_from - iterate over list of given type from the current point
 * @pos:	the type * to use as a loop cursor.
 * @head:	the head for your list.
 * @member:	the name of the list_head within the struct.
 *
 * Iterate over list of given type, continuing from current position.
 */
#define list_for_each_entry_from(pos, head, member) \
	for (; &pos->member != (head);                  \
		 pos = list_next_entry(pos, member))

/**
 * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
 * @pos:	the type * to use as a loop cursor.
 * @n:		another type * to use as temporary storage
 * @head:	the head for your list.
 * @member:	the name of the list_head within the struct.
 */
#define list_for_each_entry_safe(pos, n, head, member)       \
	for (pos = list_first_entry(head, typeof(*pos), member), \
		n = list_next_entry(pos, member);                    \
		 &pos->member != (head);                             \
		 pos = n, n = list_next_entry(n, member))

/**
 * list_for_each_entry_safe_continue - continue list iteration safe against removal
 * @pos:	the type * to use as a loop cursor.
 * @n:		another type * to use as temporary storage
 * @head:	the head for your list.
 * @member:	the name of the list_head within the struct.
 *
 * Iterate over list of given type, continuing after current point,
 * safe against removal of list entry.
 */
#define list_for_each_entry_safe_continue(pos, n, head, member) \
	for (pos = list_next_entry(pos, member),                    \
		n = list_next_entry(pos, member);                       \
		 &pos->member != (head);                                \
		 pos = n, n = list_next_entry(n, member))

/**
 * list_for_each_entry_safe_from - iterate over list from current point safe against removal
 * @pos:	the type * to use as a loop cursor.
 * @n:		another type * to use as temporary storage
 * @head:	the head for your list.
 * @member:	the name of the list_head within the struct.
 *
 * Iterate over list of given type from current point, safe against
 * removal of list entry.
 */
#define list_for_each_entry_safe_from(pos, n, head, member) \
	for (n = list_next_entry(pos, member);                  \
		 &pos->member != (head);                            \
		 pos = n, n = list_next_entry(n, member))

/**
 * list_for_each_entry_safe_reverse - iterate backwards over list safe against removal
 * @pos:	the type * to use as a loop cursor.
 * @n:		another type * to use as temporary storage
 * @head:	the head for your list.
 * @member:	the name of the list_head within the struct.
 *
 * Iterate backwards over list of given type, safe against removal
 * of list entry.
 */
#define list_for_each_entry_safe_reverse(pos, n, head, member) \
	for (pos = list_last_entry(head, typeof(*pos), member),    \
		n = list_prev_entry(pos, member);                      \
		 &pos->member != (head);                               \
		 pos = n, n = list_prev_entry(n, member))

/**
 * list_safe_reset_next - reset a stale list_for_each_entry_safe loop
 * @pos:	the loop cursor used in the list_for_each_entry_safe loop
 * @n:		temporary storage used in list_for_each_entry_safe
 * @member:	the name of the list_head within the struct.
 *
 * list_safe_reset_next is not safe to use in general if the list may be
 * modified concurrently (eg. the lock is dropped in the loop body). An
 * exception to this is if the cursor element (pos) is pinned in the list,
 * and list_safe_reset_next is called after re-taking the lock and before
 * completing the current iteration of the loop body.
 */
#define list_safe_reset_next(pos, n, member) \
	n = list_next_entry(pos, member)

/*
 * Double linked lists with a single pointer list head.
 * Mostly useful for hash tables where the two pointer list head is
 * too wasteful.
 * You lose the ability to access the tail in O(1).
 */

#endif

5.运行格式

一、服务器端

gcc xx.c -pthrad -o s

./s 8888

其中8888是端口号

二、客户端

gcc xxx.c -pthrad -o c

./s 192.xxx.xxx.xxx 8888

第二个参数是:服务器端的ip地址

第三个参数是:端口号

(注意:如果是同一台主机,则端口号不能相同)

6.效果

连接效果

断开效果

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1669108.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

如何解决IntelliJ IDEA中pom.xml依赖项引发的安全漏洞黄线警告问题

背景 在开发过程中&#xff0c;当我们在pom.xml文件中添加依赖项时&#xff0c;经常会发现IntelliJ IDEA报出黄色警告线条&#xff0c;提示存在潜在的安全漏洞。警告的具体展现形式如下&#xff1a; 解决方案 首先&#xff0c;打开设置菜单界面&#xff0c;接着选择编辑器选…

神经网络复习--神经网络算法模型及BP算法

文章目录 神经网络模型的构成BP神经网络 神经网络模型的构成 三种表示方式&#xff1a; 神经网络的三要素&#xff1a; 具有突触或连接&#xff0c;用权重表示神经元的连接强度具有时空整合功能的输入信号累加器激励函数用于限制神经网络的输出 感知神经网络 BP神经网络 …

[嵌入式系统-75]:RT-Thread-快速上手:正点原子探索者 STM32F407示例

目录 正点原子探索者 STM32F407 上手指南 1. 简介 2. 准备工作 3. 运行第一个示例程序 3.1 编译下载 3.2 运行 继续学习 正点原子探索者 STM32F407 上手指南 1. 简介 探索者 STM32F407 是正点原子推出的一款基于 ARM Cortex-M4 内核的开发板&#xff0c;最高主频为 16…

机器人学导论实验2-差速驱动机器人的运动学与控制BJTU

目录 机器人导论实验-差速驱动机器人的运动学与控制 1 实验目的 2 任务一&#xff1a;前馈控制 2.1 内容分析 2.2 过程分析 2.3 结果分析 3 任务二&#xff1a;闭环控制 3.2 过程分析 3.3 结果分析 4 任务三&#xff1a;闭环控制&#xff08;改进&#xff09; 4.1 内容分…

Kotlin: ‘return‘ is not allowed here

报错&#xff1a;以下函数的内部函数return语句报错 Kotlin: return is not allowed here fun testReturn(summary: (String) -> String): String {var msg summary("summary收到参数")println("test内部调用参数&#xff1a;>结果是 &#xff1a;${msg…

(四十)第 6 章 树和二叉树(树的双亲表存储)

1. 背景说明 2. 示例代码 1) errorRecord.h // 记录错误宏定义头文件#ifndef ERROR_RECORD_H #define ERROR_RECORD_H#include <stdio.h> #include <string.h> #include <stdint.h>// 从文件路径中提取文件名 #define FILE_NAME(X) strrchr(X, \\) ? strrch…

项目管理-计算题公式-补充【复习】

1.EMV决策树 定义&#xff1a;用决策树在若干备选行动方案中选择一个最佳方案。在决策树 中&#xff0c;用不同的分支代表不同的决策或事件&#xff0c;即项目的备选路径。每个决策或事件 都有相关的成本和单个项目风险(包括威胁和机会)。决策树分支的终点表示沿特 定路径发展的…

C++ | Leetcode C++题解之第86题分隔链表

题目&#xff1a; 题解&#xff1a; class Solution { public:ListNode* partition(ListNode* head, int x) {ListNode* small new ListNode(0);ListNode* smallHead small;ListNode* large new ListNode(0);ListNode* largeHead large;while (head ! nullptr) {if (head-…

C语言实现猜数字小游戏

1.随机数生成 要想实现猜数字小游戏&#xff0c;依赖于随机数的生成 1.1 rand()函数 这个函数是用来生成随机数的&#xff0c;返回值是正整数&#xff0c;他的值的范围是0到rand_max之间的&#xff0c;rand_max的值在大多数编译器上面是32767&#xff0c;rand()函数的使用必…

高校课程评价|基于SSM+vue的高校课程评价系统的设计与实现(源码+数据库+文档)

高校课程评价系统 目录 基于SSM&#xff0b;vue的高校课程评价系统的设计与实现 一、前言 二、系统设计 三、系统功能设计 1管理员功能模块 2学生功能 3教师功能 4专家功能 四、数据库设计 五、核心代码 六、论文参考 七、最新计算机毕设选题推荐 八、源码获取&…

Node.js基础:从入门到实战

初识 Node.js 与内置模块 &#xff08;初识&#xff09; 1、知道什么是node.js 2、知道node.js可以做什么 3、node.js 中js的组成部分 &#xff08;内置模块&#xff09; 4、用 fs 模块读写操作文件 5、使用 path 模块处理路径 6、使用http 模块写一个基本的web服务器 初识 N…

高精度原理介绍及代码实现

目录 高精度 引入 使用场景 实现原理 高精度加法 数据存储 加法实现 总代码 高精度减法 与加法的不同点&#xff1a; 总代码 高精度乘法 总代码 高精度除法 总结 总注意点 减法注意点 高精度 引入 所谓高精度并不是很高级难懂的东西&#xff0c;只是对传统的…

改进YOLOv5,YOLOv5+CBAM注意力机制

目录 1. 目标检测模型 2. YOLOv5s 3. YOLOv5s融合注意力机制 4. 修改yolov5.yaml文件 5. ChannelAttentionModule.py 6. 修改yolo.py 1. 目标检测模型 目标检测算法现在已经在实际中广泛应用&#xff0c;其目的是找出图像中感兴趣的对象&#xff0c;并确定对象的类别和位…

一文读懂设计模式-单例模式

单例模式&#xff08;Singleton Pattern&#xff09;提供了一种创建对象的最佳方式 单例模式涉及到一个单一的类&#xff0c;该类负责创建自己的对象&#xff0c;同时确保只有单个对象被创建&#xff0c;这个类提供了一种访问其唯一的对象的方式&#xff0c;可以直接访问&…

Redis—图文详解高可用原因

本文不会讲解Redis的用途&#xff0c;关于用途会发另一片文章讲解&#xff0c;本文主要讲的是高可用的原理。 Redis高可用主要有以下三个原因&#xff1a;主从模式(上一篇讲Kafka的文章里有涉及到)&#xff0c;哨兵模式&#xff0c;Redis-Cluster(Redis集群)。 什么是主从模式…

mysql集群NDBcluster引擎在写入数据时报错 (1114, “The table ‘ads‘ is full“)

问题描述&#xff1a;mysql集群在写入数据时&#xff0c;出现上述报错 问题原因&#xff1a;表数据已满&#xff0c;一般是在集群的管理节点设置里面datamemory的值太小&#xff0c;当数据量超过该值时就会出现该问题 解决方案&#xff1a; 修改集群管理节点的config.ini里面…

【Linux 网络】网络编程套接字 -- 详解

⚪ 预备知识 1、理解源 IP 地址和目的 IP 地址 举例理解&#xff1a;&#xff08;唐僧西天取经&#xff09; 在 IP 数据包头部中 有两个 IP 地址&#xff0c; 分别叫做源 IP 地址 和目的 IP 地址。 如果我们的台式机或者笔记本没有 IP 地址就无法上网&#xff0c;而因为…

操作系统原理与实验——实验十四多道批处理作业调度算法应用二

样例 样例一&#xff1a; 1 100 0 5 JOB1 10:06 42分钟 55K JOB2 10:20 30分钟 40K JOB3 10:30 24分钟 35K JOB4 10:36 15分钟 25K JOB5 10:42 12分钟 20K 2 100 0 5 JOB1 10:06 42分钟 55K JOB2 10:20 30分钟 40K JOB3 10:30 24分钟 35K JOB4 10:36 15分钟 25K JOB5 10…

开发一款相亲交友小程序

uni-app框架&#xff1a;使用Vue.js开发跨平台应用的前端框架&#xff0c;编写一套代码&#xff0c;可编译到Android、小程序等平台。 框架支持:springboot/Ssm/thinkphp/django/flask/express均支持 前端开发:vue.js 可选语言&#xff1a;pythonjavanode.jsphp均支持 运行软件…

探索共享内存:解锁并发编程的潜力

文章目录 序言shm 原理对shm的理解通过代码认识shm调用shmget方法实现 序言 system V版本 指定的一种规则(俗话说一流公司定规则,二流公司重服务,三流公司重技术).这个规则虽然有很多种(消息队列,共享内存等只是比较出名的几个).但是在内核的相关技术解决上是类似的,因为都是基…