小波去噪可以想象成使用一把“筛子”来过滤信号。这个“筛子”能够根据信号的不同频率成分,将其分解成多个层次。在这个过程中,信号的重要信息通常包含在低频部分,而噪声则多分布在高频部分。
将信号通过这个“筛子”分解后,我们可以对那些包含噪声的高频部分进行“削弱”或“切除”,然后再将剩下的部分重新组合起来。这样,经过处理的信号就会保留下重要的信息,同时去除了很多噪声。
一、数学原理详解
小波变换通过一系列可缩放(尺度变化)和平移的基函数来表示信号。这些基函数称为小波函数。
小波函数 具有一定的时间长度并集中在频率上,可以通过缩放(dilation)和平移(translation)来拟合信号的不同部分:
其中 a 是尺度参数,b 是平移参数。
分解:
信号f(t)可以通过小波函数的线性组合来分解:
其中是小波系数。
在实际操作中,通过离散小波变换DWT,我们可以得到信号在不同尺度和位置的小波系数。
去噪
小波去噪的步骤通常包括:
-
选择小波基:选择一个适当的小波函数,比如Daubechies小波。
-
多尺度分解:将信号进行多层分解,得到不同尺度上的小波系数。
-
阈值处理:对小波系数应用阈值规则。系数小于某个阈值的被视为噪声并设置为零或减小其值。阈值的选择是一个关键步骤,常用的方法有软阈值和硬阈值。软阈值方法会对系数进行收缩,而硬阈值方法会直接将小于阈值的系数置为零。
硬阈值:
软阈值:
其中是分解得到的小波系数,是阈值,是处理后的小波系数。
-
重构信号:使用阈值处理后的小波系数重构信号,这样得到的信号中噪声就会被减少。
二、Python代码实现
import matplotlib.pyplot as plt
import pywt
import seaborn as sns
sns.set(context='notebook', style='darkgrid', palette='deep', font='sans-serif', font_scale=1, color_codes=False, rc=None)
plt.rcParams['axes.unicode_minus'] = False # 防止坐标为负时出现乱码
ecg = [......] # 改成自己的数据
index = []
data = []
for i in range(len(ecg) - 1):
X = float(i)
Y = float(ecg[i])
index.append(X)
data.append(Y)
# Create wavelet object and define parameters
w = pywt.Wavelet('db4') # 选用Daubechies4小波
maxlev = pywt.dwt_max_level(len(data), w.dec_len)
print("maximum level is " + str(maxlev))
# threshold = 0.04 # Threshold for filtering
threshold = 0.08
# Decompose into wavelet components, to the level selected:
coeffs = pywt.wavedec(data, 'db4', level=maxlev) # 将信号进行小波分解
plt.figure()
for i in range(1, len(coeffs)):
coeffs[i] = pywt.threshold(coeffs[i], threshold * max(coeffs[i])) # 将噪声滤波
datarec = pywt.waverec(coeffs, 'db4') # 将信号进行小波重构
mintime = 0
maxtime = mintime + len(data) + 1
# plt.xkcd() # 胆小勿入
# plt.figure()
plt.subplot(2, 1, 1)
plt.plot(index[mintime:maxtime], data[mintime:maxtime], linewidth=1.1, color='r')
plt.xlabel('time (s)')
plt.ylabel('microvolts (uV)')
plt.title("Raw signal")
plt.subplot(2, 1, 2)
plt.plot(index[mintime:maxtime], datarec[mintime:maxtime - 1], linewidth=1.1, color='r')
plt.xlabel('time (s)')
plt.ylabel('microvolts (uV)')
plt.title("De-noised signal using wavelet techniques")
plt.tight_layout()
plt.show()