Problem: 437. 路径总和 III
文章目录
- 题目描述
- 思路
- 复杂度
- Code
题目描述
思路
1.定义int类型函数rootSum(root, targetSum),用于求取每一个节点等于目标函数的路径数:
1.1.易知rootSum(root, targetSum)求出的数量等于rootSum(root.left, targetSum - value)求出的数量加上rootSum(root.right, targetSum - value)求出的数量,其中value是当前遍历到的节点的节点值
1.2.若当前的value值等于targetSum,则所求的路径总和加一;
2.在pathSum函数中实现对每一个节点调用rootSum函数得出最终的路劲总和数
复杂度
时间复杂度:
O ( n 2 ) O(n^2) O(n2);其中 n n n为二叉树节点的个数
空间复杂度:
O ( n ) O(n) O(n)
Code
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
/**
* Path Sum III
*
* @param root The root of binary tree
* @param targetSum The target number
* @return int
*/
public int pathSum(TreeNode root, long targetSum) {
if (root == null) {
return 0;
}
int res = rootSum(root, targetSum);
res += pathSum(root.left, targetSum);
res += pathSum(root.right, targetSum);
return res;
}
/**
* Find the sum of the target paths of each node
*
* @param root The root of binary tree
* @param targetSum The target number
* @return int
*/
public int rootSum(TreeNode root, long targetSum) {
int res = 0;
if (root == null) {
return 0;
}
int value = root.val;
if (value == targetSum) {
res++;
}
res += rootSum(root.left, targetSum - value);
res += rootSum(root.right, targetSum - value);
return res;
}
}