手把手教你在本机安装Stable Diffusion秋叶整合包(附安装包和大模型)

news2024/11/17 11:31:30

整合包对非技术出身的同学比较友好,因为秋叶大佬把相关的东西已经都整合好了,只需要点点点就行了。当然懂编程的同学就更没有问题了。
文末领取SD安装包和大模型!

准备

为了保证AI绘画的效率,建议在本机安装Nvidia独立显卡,也就是俗称的N卡,并且显存要达到6G以上,6G只能出图,如果要做训练建议12G以上。推荐选择RTX40系列及以上的显卡型号,最低也要选择RTX30系列。如果你没有N卡,可以使用CPU进行图形计算,但是性价比较低,出图速度较慢。此外,还需要确保CPU性能足够高,并且搭配至少16G的内存。总的来说,如果只是进行简单的图形处理或者体验,可以使用CPU,但不适合搞AI绘画。

看到这里,有的同学可能会有点失望了,没有这么好的机器就玩不了AI绘画吗?别担心,我们还可以使用云主机,下一篇我会分享使用云主机的姿势。

安装前看自己显卡型号的方法:

1、电脑左下角点击WIndows窗口图标,然后点击“设置”。

2、在打开的窗口中,搜索“设备管理器”,找到后点击打开。

3、找到“显示适配器”,就可以看自己的显卡了。如果是Nvidia的显卡,就会有这几个字。我这个演示的电脑是不是N卡,所以只能以CPU的方式运行。

下载

所有需要的东西都可分享
(见文末)

为了方便大家搞AI绘画,这里边不仅包含了秋叶大佬的整合包,还有很多的大模型、Lora模型、ControlNet模型等等,总计大约有100多G,全部下载下来会很慢。

但是没必要都下载下来再安装,先把最后两个文件下载下来就行了,鉴于百度限速,可能也需要几个小时,大家耐心等待,磨刀不误砍柴工!

启动

下载完上边说的两个文件就可以启动。

1、安装驱动。这个整合包是由 .NET6 (就是一个软件基础平台)驱动的, 大家需要先安装“启动器运行依赖-dotnet-6.0.11.exe”这个文件。

安装过.NET6的同学可以跳过这一步,不懂的再安装一遍也没问题。

2、解压“sd-webui-aki-v4.zip”。自己选择一个磁盘,比如D盘,直接解压到D盘根目录就行了。然后进入解压后的文件夹 sd-webui-aki-v4 。

双击“A启动器.exe”,它会自动下载一些最新的程序文件。我这里还弹出了“设置Windows支持长路径”,确定就可以了。

启动成功后,会打开下边这个界面。如果啥都做完了,也没打开这个界面,就再次双击这个文件,一般就打开了,还打不开的找我。

在这个启动界面中点击右下角的“一键启动”按钮。

然后会弹出一个控制台窗口,做一些初始化的操作,出现“Startup time …”的提示就代表启动成功了。

然后这个工具会自动在浏览器中打开SD WebUI的窗口。不小心关了的时候,也可以用 http://127.0.0.1:7860 再次打开。打开的界面如下图所示:

出图

只需要简单5步:

1、Stable Diffusion 模型:anything-v5,这个是整合包自带的默认大模型,不用选就是它。

2、外挂VAE模型:选择 840000 这个,这东西就像个滤镜,用它出图的颜色比较丰富。

3、提示词:想要画个什么,就在这里写,需要是英文。

4、反向提示词:不想要在图片中出现什么,就把它写在这里,这里填写的“EasyNegative”是整合包附带的一个通用反向提示词的代号。

5、其它参数先不管,点击“生成”按钮。

6、生成速度取决于你的计算机性能,等一会就会出图了。点击可以放大,右键可以下载。

除了在这个WebUI上直接下载图片,我们还可以通过启动工具下载,如下图所示,红框圈出的就是各种生成方式保存图片的位置,单击就可以打开本机目录。

进阶

为了更好的绘图,这里介绍几个基础并且常用的概念:

模型:可以理解成一个函数,输入一些参数,得到一些返回值。只不过这里谈到的模型的参数特别多,几十亿、上百亿、上千亿。在Stable Diffusion中,我们可以简单的认为参数就是提示词、反向提示词、图片尺寸、提示词引导系数、随机数种子等等,返回值就是图片数据。

大模型:有时也称为基础模型,文件一般很大,常见的都在2G-5G。这是因为它们使用了很多的图片进行训练,累积了大量的数据。SD官方发布了一个基础模型,但是因为比较通用,兼顾的方面比较多,特点不足,所以大家一般很少使用。比如有的人喜欢二次元、有的人喜欢真实、有的人喜欢3D,用官方模型出图的效果不是最优的,所以很多组织或者个人就专门训练某方面的模型,并发布到社区给大家使用。

盘盘中提供了一些大模型,大家可以去下载:

然后放到整合包的这个目录下:sd-webui-aki-v4\models\Stable-diffusion,从盘盘下载的整合包中已经默认有一个大模型。

VAE模型:这个东西有点类似手机中编辑照片时的滤镜,可以处理图片的颜色和线条,让图片看起来色彩更丰富饱满。很多大模型会自带VAE模型,这时候我们就不需要再给它搭配一个VAE,当然也有不自带的,这时就需要搭配一个。上图选择的 840000 是一个常用的的VAE模型,如果你生成的图片比较灰暗,可以试试这个VAE。其实秋叶整合包提供了四个选项,如下图所示,我一般都选“自动识别”,除了 840000,animevae 是专门优化二次元图片的。一般这两个VAE模型就够了。

Lora模型:这是一种基于大模型的风格模型,比如我们画小姐姐的时候,可以用一些Lora模型来控制人物的服装、头饰;生成机械四肢的时候,可以用一些Lora模型来强化肢体上覆盖的机甲样式;画风景图的时候,可以用一些Lora模型来控制绘画的风格。

可以从盘盘中的这两个目录下载:

下载后放到整合包的这个目录下:sd-webui-aki-v4\models\Lora,初始状态下里边是空的。

提示词:对图像的描述,也就是想画一幅什么样的画。比如我上边使用的:a girl,但是这个提示词过于简单,AI虽然画出了一个女孩,但是他不知道你脑子里的女孩长什么样子,如果要画的更符合你的需求,你还要告诉他更多细节才好,比如女孩的头发是什么颜色、穿着什么衣服、站着还是坐着、在户外还是室内等等。提示词在AI绘画中特别重要,后边我会专门分享如何写好提示词。

反向提示词:不想在图片中出现的东西,比如树、桌子、6根手指、缺胳膊断腿等等,在上边的示例中我使用了“EasyNegative”,这是一个嵌入模型的代号,可以认为它代表了很多常见的反向提示词,使用它就不用一个个输入了,也不占用过多的提示词。

随机数种子:上边没有演示这个参数,但是它是AI绘画的魅力之一。即使其它的参数都相同,只要随机数不同,每次生成就会出来不同的图片,创意几乎无穷无尽。

先说这么多吧,学习重在持之以恒,不要撑着,后边我们慢慢再讲。

更新

Stable Diffusion WebUI 经常会修复一些BUG和增加新功能,在这里可以把它更新到最新版本。


写在最后

感兴趣的小伙伴,赠送全套AIGC学习资料,包含AI绘画、AI人工智能等前沿科技教程和软件工具,具体看这里。

AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。

在这里插入图片描述

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1642947.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

转速(RPM)和角速度转换FC(CODESYS ST代码)

1、频率和转速转换功能块 频率和转速转换功能块(CODESYS ST源代码)-CSDN博客文章浏览阅读16次。1、转速和频率转换功能块转速和频率转换功能块(CODESYS ST源代码)-CSDN博客文章浏览阅读10次。1、转速/频率常用转换关系转速/频率/线速度/角速度计算FC_200 plc计算角速度-CSDN博…

EXCEL怎样把筛选后含有公式的数据,复制粘贴到同一行的其它列?

自excel2003版之后,常规情况下,复制筛选后的数据,会忽略隐藏行,仅复制其筛选后的数据,粘贴则是粘贴到连续单元格区域,不管行是在显示状态还是隐藏状态。 一、初始数据: 二、题主的复制粘贴问题…

Android仿微信公众号文章页面加载进度条

前言: 微信公众号文章详情页面加载的时候,WebView会在头部显示一个进度条,这样做的好处就是用户可以一边加载网页内容的同时也可浏览网页内容,不需要等完全加载完之后才全部显示出来。如何实现呢? 其实很简单&#xf…

【机器学习】BK- SDM与LCM的融合策略在文本到图像生成中的应用

突破边缘设备限制:BK-SDM与LCM的融合策略在文本到图像生成中的应用 一、引言二、稳定扩散算法的挑战与现状三、BK-SDM与LCM的融合策略利用高质量图像-文本对进行训练为LCM量身定制高级蒸馏过程 四、结论与展望 一、引言 随着人工智能技术的飞速发展,文本…

www.fastssh.com SSH over WebSockets with CDNs

https://www.fastssh.com/page/create-ssh-cdn-websocket/server/这其实不是标准的websocket报文(服务器响应报文无Sec-Websocket-Accept字段),所以无法使用github.com/gorilla/websocket包:GET / HTTP/1.1 Host: hostname:8080 User-Agent: Go-http-cli…

c#学习基础1

一、复杂数据类型 1)概述 2)枚举 1.基本概念 枚举是一个比较特别的存在,它是一个被命名的整形常量的集合,一般用它来表示状态,类型等 1.1申明枚举和申明枚举变量 1.2申明枚举语法 2.在哪里申明枚举 3.枚举的使用 4…

Unity技术学习:RenderMesh、RenderMeshInstanced

叠甲:本人比较菜,如果哪里不对或者有认知不到的地方,欢迎锐评(不玻璃心)! 导师留了个任务,渲染大量的、移动的物体。 当时找了几个解决方案: 静态批处理: 这东西只对静…

从0开始linux(1)——文件操作

欢迎来到博主的专栏——从0开始linux 博主ID:代码小豪 博主使用的linux发行版是:CentOS 7.6 不同版本下的操作可能存在差异 文章目录 命令文件操作命令文件树和文件路径文件树绝对路径相对路径 文件属性tree指令删除文件复制文件 大家还记得在小学第一次…

java下乡扶贫志愿者招募管理系统springboot-vue

计算机技术在现代管理中的应用,使计算机成为人们应用现代技术的重要工具。能够有效的解决获取信息便捷化、全面化的问题,提高效率。 技术栈 前端:vue.jsElementUI 开发工具:IDEA 或者eclipse都支持 编程语言: java 框架&#xff1…

SQL 基础 | AVG 函数的用法

在SQL中,AVG()是一个聚合函数,用来计算某个列中所有值的平均值。 它通常与GROUP BY子句一起使用,以便对分组后的数据进行平均值计算。 AVG()函数在需要了解数据集中某个数值列的中心趋势时非常有用。 以下是AVG()函数的一些常见用法&#xff…

猿人学第七题-动态字体-随风漂移

前言:该题主要是考对fontTools.ttLib.TTFont的操作,另外就是对字典互相映射的操作 一、woff文件存储 from fontTools.ttLib import TTFont #pip install fontTools def save_woff(response):woff response[woff]woff_file base64.b64decode(woff.enc…

第11章 软件工程

这里写目录标题 1.软件过程1.1能力成熟度模型(CMM)1.2能力成熟度模型集成(CMMI)1.3瀑布模型(线性顺序)1.4增量模型1.5演化模型1.5.1原型模型1.5.2螺旋模型 1.6喷泉模型1.7统一过程(UP)模型 2.敏捷方法3.系统设计4.系统测试4.1单元测试(模块测试)4.2集成测试4.3黑盒测试(功能测试…

噪声嵌入提升语言模型微调性能

在自然语言处理(NLP)的快速发展中,大模型(LLMs)的微调技术一直是研究的热点。最近,一篇名为《NEFTUNE: NOISY EMBEDDINGS IMPROVE INSTRUCTION FINETUNING》的论文提出了一种新颖的方法,通过在训…

每日一题2:获取DataFrame的大小

在Python中,pandas库是一个非常流行的数据处理库,它提供了DataFrame这一数据结构来高效地处理表格化的数据。如果想查看一个DataFrame的行数和列数,可以使用.shape来实现。 一、基本用法 当你有一个名为df的DataFrame时,只需调用…

rust使用Atomic创建全局变量和使用

Mutex用起来简单,但是无法并发读,RwLock可以并发读,但是使用场景较为受限且性能不够,那么有没有一种全能性选手呢? 欢迎我们的Atomic闪亮登场。 从 Rust1.34 版本后,就正式支持原子类型。原子指的是一系列…

USP技术提升大语言模型的零样本学习能力

大语言模型(LLMs)在零样本和少样本学习能力上取得了显著进展,这通常通过上下文学习(in-context learning, ICL)和提示(prompting)来实现。然而,零样本性能通常较弱,因为缺…

c#Excel:2.写入Excel表 3.读取Excel表

--写入Excel表-- 该例首先从数据库aq中读取学生信息表staq(参考数据库章节),然后将学生信息表中的数据写入Excel表格中 (1)在OfficeOperator类库项目的ExcelOperator类中定义索引器,用于获取Excel表格中的单元格,代码…

QT:QT窗口(一)

文章目录 菜单栏创建菜单栏在菜单栏中添加菜单创建菜单项添加分割线 工具栏创建工具栏设置停靠位置创建工具栏的同时指定停靠位置使用QToolBar类提供的setAllowedAreas函数来设置停靠位置 设置浮动属性设置移动属性 状态栏状态栏的创建在状态栏中显示实时消息在状态栏中显示永久…

Meta Llama 3 使用 Hugging Face 和 PyTorch 优化 CPU 推理

原文地址:meta-llama-3-optimized-cpu-inference-with-hugging-face-and-pytorch 了解在 CPU 上部署 Meta* Llama 3 时如何减少模型延迟 2024 年 4 月 19 日 万众期待的 Meta 第三代 Llama 发布了,我想确保你知道如何以最佳方式部署这个最先进的&…

深入学习Redis(1):Redis内存模型

Redis的五个对象类型 字符串,哈希,列表,集合,有序集合 本节有关redis的内存模型 1.估算redis的内存使用情况 目前内存的价格比较的高,如果对于redis的内存使用情况能够进行计算,就可以选用合适的设备进…