安装英伟达nvidia p4计算卡驱动@FreeBSD14

news2025/1/15 23:42:01

FreeBSD也能跑cuda AI训练拉!

在FreeBSD安装好pytorch和飞桨cpu版本后,尝试安装英伟达nvidia p4计算卡驱动。毕竟全靠cpu速度太慢了,还是GPU快啊!在磕磕绊绊几天后,终于成功成功安装好nvidia p4的cuda驱动,pytorch成功运行,FreeBSD也能跑cuda AI训练拉!

参考:https://github.com/verm/freebsd-stable-diffusion

安装前置技能 

需要FreeBSD下的Linux兼容执行经验,具体参考FreeBSD官网:Chapter 12. Linux Binary Compatibility | FreeBSD Documentation Portal

简单来说就是要执行下面这句:

pkg install linux_base-c7
pkg install linux-c7-devtools

安装miniconda,参考安装Miniconda@FreeBSD13-CSDN博客 

 FreeBSD跑起来GPU训练坎坷的过程

尝试安装cuda470版本

首先FreeBSD下已经有nvidia的驱动,查找nvidia驱动

pkg search nvidia

libva-nvidia-driver-0.0.11     NVDEC-based backend for VAAPI
linux-nvidia-libs-550.54.14    NVidia graphics libraries and programs (Linux version)
linux-nvidia-libs-304-304.137  NVidia graphics libraries and programs (Linux version)
linux-nvidia-libs-340-340.108  NVidia graphics libraries and programs (Linux version)
linux-nvidia-libs-390-390.154  NVidia graphics libraries and programs (Linux version)
linux-nvidia-libs-470-470.161.03 NVidia graphics libraries and programs (Linux version)
nvidia-driver-550.54.14        NVidia graphics card binary drivers for hardware OpenGL rendering
nvidia-driver-304-304.137_10   NVidia graphics card binary drivers for hardware OpenGL rendering
nvidia-driver-340-340.108_4    NVidia graphics card binary drivers for hardware OpenGL rendering
nvidia-driver-390-390.154_1    NVidia graphics card binary drivers for hardware OpenGL rendering
nvidia-driver-470-470.161.03_1 NVidia graphics card binary drivers for hardware OpenGL rendering
nvidia-drm-510-kmod-550.54.14_1 NVIDIA DRM Kernel Module
nvidia-drm-515-kmod-550.54.14_1 NVIDIA DRM Kernel Module
nvidia-drm-kmod-550.54.14      NVIDIA DRM Kernel Module
nvidia-hybrid-graphics-0.6     NVIDIA secondary GPU configuration - Optimus Technology support
nvidia-hybrid-graphics-390-0.6 NVIDIA secondary GPU configuration - Optimus Technology support
nvidia-secondary-driver-550.54.14_1 NVidia graphics card binary drivers for hardware OpenGL rendering on secondary device
nvidia-secondary-driver-390-390.154_1 NVidia graphics card binary drivers for hardware OpenGL rendering on secondary device
nvidia-settings-535.146.02_1   Display Control Panel for X NVidia driver
nvidia-texture-tools-2.1.2     Texture Tools with support for DirectX 10 texture formats
nvidia-xconfig-525.116.04      Tool to manipulate X configuration files for the NVidia driver
nvidia_gpu_prometheus_exporter-g20181028_19 NVIDIA GPU Prometheus exporter

这里我们先选470版本,550版本好像有问题,在linux下也没装成功。大约525或535版本应该也可以,但是FreeBSD没有现成的。

安装驱动

pkg install nvidia-driver-470

但是FreeBSD下直接运行nvidia-smi是看不到cuda版本的:

nvidia-smi
Thu May  2 17:17:58 2024       
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 470.161.03   Driver Version: 470.161.03   CUDA Version: N/A      |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  Tesla P4            Off  | 00000000:13:00.0 Off |                    0 |
| N/A   48C    P0    23W /  75W |      0MiB /  7611MiB |      1%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+

需要使用nv-sglrun 来运行,安装pkg install libc6-shim来获得nv-sglrun命令:

pkg install libc6-shim

 安装linux-nvidia-libs-470库

pkg install linux-nvidia-libs-470

 查看驱动:

nv-sglrun nvidia-smi

现在驱动就正常了

nv-sglrun nvidia-smi
shim init
Thu May  2 17:48:27 2024       
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 470.161.03   Driver Version: 470.161.03   CUDA Version: 11.4     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  Tesla P4            Off  | 00000000:13:00.0 Off |                    0 |
| N/A   48C    P0    23W /  75W |      0MiB /  7611MiB |      1%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+

原来是cuda是11.4,我原来记错了啊,需要安装11.4的飞桨或者pytorch 

安装飞桨2.6.1 cuda11.2版本

conda install paddlepaddle-gpu==2.6.1 cudatoolkit=11.2 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/Paddle/ -c conda-forge 

测试飞桨

python -c "import paddle; paddle.utils.run_check()"
WARNING: Logging before InitGoogleLogging() is written to STDERR
W0502 18:13:53.988302  1225 default_variables.cpp:433] Fail to open /proc/self/io: No such file or directory [2]
/home/skywalk/miniconda3/envs/pytorch/lib/python3.10/site-packages/paddle/base/framework.py:688: UserWarning: You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default.
  warnings.warn(
Running verify PaddlePaddle program ... 
[2024-05-02 18:13:55,300] [ WARNING] install_check.py:60 - You are using GPU version PaddlePaddle, but there is no GPU detected on your machine. Maybe CUDA devices is not set properly.
 Original Error is 
I0502 18:13:55.313150  1225 program_interpreter.cc:212] New Executor is Running.
I0502 18:13:55.346310  1225 interpreter_util.cc:624] Standalone Executor is Used.
PaddlePaddle works well on 1 CPU.
PaddlePaddle is installed successfully! Let's start deep learning with PaddlePaddle now.

 没有启动GPU,还需努力!

换成11.6版本cuda飞桨试试

conda install paddlepaddle-gpu==2.6.1 cudatoolkit=11.6 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/Paddle/ -c conda-forge 

发现问题了,原来飞桨的安装版本,cuda11.4的用的是11.7飞桨2.6.1 py310_gpu_cuda11.7_many_linux, cuda11.6用的conda install paddlepaddle-gpu==2.6.1 cudatoolkit=11.2 。

这里乌龙了,飞桨官网并没有放错版本,是本人看到xx 被替换 BB,就以为当前的是xx。

这样当然换了版本一样的报错。

加上变量:export LD_PRELOAD="/home/skywalk/work/dummy-uvm.so"

然后报错

W0502 18:46:41.397257  1347 gpu_resources.cc:164] device: 0, cuDNN Version: 8.4.
W0502 18:46:41.397300  1347 gpu_resources.cc:196] WARNING: device: 0. The installed Paddle is compiled with CUDA 11.6, but CUDA runtime version in your machine is 11.4, which may cause serious incompatible bug. Please recompile or reinstall Paddle with compatible CUDA version.
 ExternalError: CUDA error(46), all CUDA-capable devices are busy or unavailable. 

也就是不加变量是看不到GPU的。 

 尝试安装cuda550版本

pkg install nvidia-driver-550.54.14
pkg install linux-nvidia-libs-550.54.14

安装完之后重启,可以看到是12.4版本

nv-sglrun nvidia-smi
shim init
Thu May  2 19:52:25 2024       
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 550.54.14              Driver Version: 550.54.14      CUDA Version: 12.4     |

飞桨官网没有conda 对12.4版本的支持,只能用pip安装:

python -m pip install paddlepaddle-gpu==2.6.1.post120 -f https://www.paddlepaddle.org.cn/whl/linux/mkl/avx/stable.html

 装了之后报错。

尝试安装pytorch,但是conda安装太慢,只好放弃了。其实如果这里是国外,那么conda应该能安好装550的对应torch版本环境。但是国内conda的 -c nvidia太慢,以至于报错,先放弃了。

中间还安装了nvidia-driver-390,但是它完全不显示cuda版本,导致根本没法找相应的飞桨或torch,只好放弃了。

 怒了,装cuda535版本,成功!

执行命令,里面可能还把amd gpu的驱动也安装了,就不管那么多了,装上:

pkg install nvidia-driver-535.146.02 linux-nvidia-libs-535.146.02 libva-nvidia-driver nvidia-drm-kmod-535.146.02

 驱动安装成功:

nv-sglrun nvidia-smi
shim init
Thu May  2 20:46:41 2024       
+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 535.146.02             Driver Version: 535.146.02   CUDA Version: 12.2     |

我的天,老天爷,这是杂的了,竟然成功了!

(pytorch) [skywalk@fb14 ~]$ export LD_PRELOAD="/home/skywalk/work/dummy-uvm.so"
(pytorch) [skywalk@fb14 ~]$ python3 -c 'import torch; print(torch.cuda.is_available())'
True
(pytorch) [skywalk@fb14 ~]$ python3 -c "import torch ; print(torch.randn((2,3),device='cuda'))"
tensor([[-0.6359,  0.0748,  1.7495],
        [ 2.2609,  0.0373, -0.1241]], device='cuda:0')

 太牛了,FreeBSD下安装英伟达nvidai驱动,成功跑起来pytorch拉!

飞桨还是没过,不过不重要了,这两个有一个跑起来就行!

使用fastai测试

LD_PRELOAD="/home/skywalk/work/dummy-uvm.so"  python3 testai.py

 测试代码testai.py:

from fastai.text.all import *
path = untar_data(URLs.IMDB)
path.ls()

dls = TextDataLoaders.from_folder(untar_data(URLs.IMDB), valid='test')
learn = text_classifier_learner(dls, AWD_LSTM, drop_mult=0.5, metrics=accuracy)
learn.fine_tune(4, 1e-2)
learn.show_results()

温度上来了:

  0  Tesla P4                       Off | 00000000:13:00.0 Off |                    0 |
| N/A   82C    P0              69W /  75W |   1852MiB /  7680MiB |     98%      Default |
 

感觉速度比cpu快了10倍以上。不过后面报错,不知道是fastai的代码对显存要求较高,毕竟P4只有8G显存。

 FreeBSD跑CUDA总结:

FreeBSD,要用nvidia 535驱动:

pkg install nvidia-driver-535.146.02 linux-nvidia-libs-535.146.02 libva-nvidia-driver nvidia-drm-kmod-535.146.02

pytorch,要用12.1cuda版本:

pip3 install torch torchvision torchaudio

FreeBSD Linux虚拟那块需要的库:

pkg install linux_base-c7
pkg install linux-c7-devtools
pkg install libc6-shim

 FreeBSD下还需要一个库:LD_PRELOAD="/home/skywalk/work/dummy-uvm.so"

这个文件是这样下载并编译的:

# 下载
fetch https://gist.githubusercontent.com/shkhln/40ef290463e78fb2b0000c60f4ad797e/raw/f640983249607e38af405c95c457ce4afc85c608/uvm_ioctl_override.c
# 编译
/compat/linux/bin/cc --sysroot=/compat/linux -m64 -std=c99 -Wall -ldl -fPIC -shared -o dummy-uvm.so uvm_ioctl_override.c

编译好的文件 dummy-uvm.so放在~/work 目录,后面要用到。

安装了miniconda3,并创建了pytorch这个虚拟python env环境,每次进入venv环境用命令:

source miniconda3/etc/profile.d/conda.sh
conda activate pytorch

执行要前面加上这句LD_PRELOAD="/home/skywalk/work/dummy-uvm.so"  ,也就是LD_PRELOAD="/home/skywalk/work/dummy-uvm.so"  python3 xx.py ,例子如下:

LD_PRELOAD="/home/skywalk/work/dummy-uvm.so" python3 -c "import torch ; print(torch.randn((2,3),device='cuda'))"
tensor([[ 0.7900, -0.0157,  0.6979],
        [-1.2775, -0.4350,  1.0054]], device='cuda:0')

 之所以每次执行的赋值LD_PRELOAD是因为如果直接把LD_PRELOAD通过export设给用户环境,会影响整个用户系统,甚至不能执行ls pwd等命令。

调试

nv-sglrun nvidia-smi报错 Failed to initialize NVML: Driver/library version mismatch


 安装linux-nvidia-libs-470库解决问题

pkg install linux-nvidia-libs-470

另外每次修改驱动后,需要重启机器。 

FreeBSD pkg速度慢的问题

由于频繁更新驱动,需要较快的下载速度,修改文件:

vi /usr/local/etc/pkg/repos/FreeBSD.conf
加入内容:

FreeBSD: {
  url: "http://mirrors.ustc.edu.cn/freebsd-pkg/${ABI}/quarterly",
}
pkg 加速完成!

gpu报错,现在至少证明能看到gpu拉!

export LD_PRELOAD="/home/skywalk/work/dummy-uvm.so"
(pytorch) [skywalk@fb14 ~]$ python -c "import paddle; paddle.utils.run_check()"
WARNING: Logging before InitGoogleLogging() is written to STDERR
W0502 18:46:39.726972  1347 default_variables.cpp:433] Fail to open /proc/self/io: No such file or directory [2]
Running verify PaddlePaddle program ... 
I0502 18:46:41.369956  1347 program_interpreter.cc:212] New Executor is Running.
W0502 18:46:41.370352  1347 gpu_resources.cc:119] Please NOTE: device: 0, GPU Compute Capability: 6.1, Driver API Version: 11.4, Runtime API Version: 11.6
W0502 18:46:41.397257  1347 gpu_resources.cc:164] device: 0, cuDNN Version: 8.4.
W0502 18:46:41.397300  1347 gpu_resources.cc:196] WARNING: device: 0. The installed Paddle is compiled with CUDA 11.6, but CUDA runtime version in your machine is 11.4, which may cause serious incompatible bug. Please recompile or reinstall Paddle with compatible CUDA version.
Traceback (most recent call last):
  File "<string>", line 1, in <module>
  File "/home/skywalk/miniconda3/envs/pytorch/lib/python3.10/site-packages/paddle/utils/install_check.py", line 273, in run_check
    _run_static_single(use_cuda, use_xpu, use_custom, custom_device_name)
  File "/home/skywalk/miniconda3/envs/pytorch/lib/python3.10/site-packages/paddle/utils/install_check.py", line 150, in _run_static_single
    exe.run(startup_prog)
  File "/home/skywalk/miniconda3/envs/pytorch/lib/python3.10/site-packages/paddle/base/executor.py", line 1746, in run
    res = self._run_impl(
  File "/home/skywalk/miniconda3/envs/pytorch/lib/python3.10/site-packages/paddle/base/executor.py", line 1952, in _run_impl
    ret = new_exe.run(
  File "/home/skywalk/miniconda3/envs/pytorch/lib/python3.10/site-packages/paddle/base/executor.py", line 831, in run
    tensors = self._new_exe.run(
OSError: In user code:

    File "<string>", line 1, in <module>
      
    File "/home/skywalk/miniconda3/envs/pytorch/lib/python3.10/site-packages/paddle/utils/install_check.py", line 273, in run_check
      _run_static_single(use_cuda, use_xpu, use_custom, custom_device_name)
    File "/home/skywalk/miniconda3/envs/pytorch/lib/python3.10/site-packages/paddle/utils/install_check.py", line 135, in _run_static_single
      input, out, weight = _simple_network()
    File "/home/skywalk/miniconda3/envs/pytorch/lib/python3.10/site-packages/paddle/utils/install_check.py", line 31, in _simple_network
      weight = paddle.create_parameter(
    File "/home/skywalk/miniconda3/envs/pytorch/lib/python3.10/site-packages/paddle/tensor/creation.py", line 228, in create_parameter
      return helper.create_parameter(
    File "/home/skywalk/miniconda3/envs/pytorch/lib/python3.10/site-packages/paddle/base/layer_helper_base.py", line 444, in create_parameter
      self.startup_program.global_block().create_parameter(
    File "/home/skywalk/miniconda3/envs/pytorch/lib/python3.10/site-packages/paddle/base/framework.py", line 4381, in create_parameter
      initializer(param, self)
    File "/home/skywalk/miniconda3/envs/pytorch/lib/python3.10/site-packages/paddle/nn/initializer/initializer.py", line 40, in __call__
      return self.forward(param, block)
    File "/home/skywalk/miniconda3/envs/pytorch/lib/python3.10/site-packages/paddle/nn/initializer/constant.py", line 84, in forward
      op = block.append_op(
    File "/home/skywalk/miniconda3/envs/pytorch/lib/python3.10/site-packages/paddle/base/framework.py", line 4467, in append_op
      op = Operator(
    File "/home/skywalk/miniconda3/envs/pytorch/lib/python3.10/site-packages/paddle/base/framework.py", line 3016, in __init__
      for frame in traceback.extract_stack():

    ExternalError: CUDA error(46), all CUDA-capable devices are busy or unavailable. 
      [Hint: 'cudaErrorDevicesUnavailable'. This indicates that all CUDA devices are busy or unavailable at the current time. Devices are often busy/unavailable due touse of cudaComputeModeExclusive, cudaComputeModeProhibited or when long running CUDA kernels have filled up the GPU and are blocking new work from starting. They can also be unavailabledue to memory constraints on a device that already has active CUDA work being performed.] (at ../paddle/phi/backends/gpu/cuda/cuda_info.cc:209)
      [operator < fill_constant > error]

 后面测试了各种版本,好像550版本 470版本都有点问题,所以最后是装了535版本搞定的。而且飞桨也没有搞定,而是torch搞定了。

FreeBSD的pkg被降低版本到1.20.9

安装nvidia 470版本时,pkg被降低了版本, pkg --version
1.20.9

导致无法安装535版本 。

反复用pkg update,不行。进入ports版本重新make:cd /usr/ports/ports-mgmt/pkg && make install ,还是1.20.6版本。

将这个文件改名:/usr/local/etc/pkg/repos # mv FreeBSD.conf  FreeBSD.confbak 

然后pkg update ,终于升级了pkg的信息了。       然后pkg install pkg, 终于装上了1.21. 2版本。

飞桨的cuda12版本报错

 python -c "import paddle; paddle.utils.run_check()"
Error: Can not import paddle core while this file exists: /home/skywalk/miniconda3/envs/pytorch/lib/python3.10/site-packages/paddle/base/libpaddle.so
Traceback (most recent call last):
  File "<string>", line 1, in <module>
  File "/home/skywalk/miniconda3/envs/pytorch/lib/python3.10/site-packages/paddle/__init__.py", line 28, in <module>
    from .base import core  # noqa: F401
  File "/home/skywalk/miniconda3/envs/pytorch/lib/python3.10/site-packages/paddle/base/__init__.py", line 36, in <module>
    from . import core
  File "/home/skywalk/miniconda3/envs/pytorch/lib/python3.10/site-packages/paddle/base/core.py", line 380, in <module>
    raise e
  File "/home/skywalk/miniconda3/envs/pytorch/lib/python3.10/site-packages/paddle/base/core.py", line 268, in <module>
    from . import libpaddle
ImportError: /lib64/libstdc++.so.6: version `GLIBCXX_3.4.20' not found (required by /home/skywalk/miniconda3/envs/pytorch/lib/python3.10/site-packages/paddle/base/libpaddle.so)

 确实cuda12版本有这个glibxcc not found问题,看官网github issue里面就有,是个老遗留问题。

尝试安装pytorch是不是能救一下飞桨。结果发现torch的conda安装太慢了...用pip试试:

pip3 install torch torchvision torchaudio

torch不行,

python3 -c 'import torch; print(torch.cuda.is_available())'
/home/skywalk/miniconda3/envs/pytorch/lib/python3.10/site-packages/torch/cuda/__init__.py:118: UserWarning: CUDA initialization: Unexpected error from cudaGetDeviceCount(). Did you run some cuda functions before calling NumCudaDevices() that might have already set an error? Error 304: OS call failed or operation not supported on this OS (Triggered internally at ../c10/cuda/CUDAFunctions.cpp:108.)
  return torch._C._cuda_getDeviceCount() > 0

飞桨也不行,下面信息有误,以后再修正过来。

python3 -c 'import torch; print(torch.cuda.is_available())'
/home/skywalk/miniconda3/envs/pytorch/lib/python3.10/site-packages/torch/cuda/__init__.py:118: UserWarning: CUDA initialization: Unexpected error from cudaGetDeviceCount(). Did you run some cuda functions before calling NumCudaDevices() that might have already set an error? Error 304: OS call failed or operation not supported on this OS (Triggered internally at ../c10/cuda/CUDAFunctions.cpp:108.)
  return torch._C._cuda_getDeviceCount() > 0
False

 解决的方法就是不用cuda550,换成cuda535版本,搞定torch!

torch好之后,ls等命令报错

ls
ld-elf.so.1: Shared object "libdl.so.2" not found, required by "dummy-uvm.so"
那就不要把dummy-uvm.so写到全局里面,每次用的时候单独写,如:

LD_PRELOAD="/home/skywalk/work/dummy-uvm.so"  python3 xx.py

训练报错CUDA out of memory.

在使用fastai测试样例的时候,大约训练3-4分钟之后 报错:

  File "/home/skywalk/miniconda3/envs/pytorch/lib/python3.10/site-packages/fastai/text/models/awdlstm.py", line 86, in forward
    masked_embed = self.emb.weight * mask
torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 92.00 MiB. GPU 
 

不知道是测试程序超过了8G 显存,还是这个P4卡有问题。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1639292.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

拆单算法交易(Algorithmic Trading)

TWAP TWAP交易时间加权平均价格Time Weighted Average Price 模型&#xff0c;是把一个母单的数量平均地分配到一个交易时段上。该模型将交易时间进行均匀分割&#xff0c;并在每个分割节点上将拆分的订单进行提交。例如&#xff0c;可以将某个交易日的交易时间平均分为N 段&am…

密码学基础练习五道 RSA、elgamal、elgamal数字签名、DSA数字签名、有限域(GF)上的四则运算

1.RSA #include <stdlib.h>#include <stdio.h>#include <string.h>#include <math.h>#include <time.h>#define PRIME_MAX 200 //生成素数范围#define EXPONENT_MAX 200 //生成指数e范围#define Element_Max 127 //加密单元的…

26版SPSS操作教程(高级教程第十八章)

目录 前言 粉丝及官方意见说明 第十八章一些学习笔记 第十八章一些操作方法 经典判别分析 数据假设 具体操作 结果解释 判别结果的图形化展示 结果解释 判别效果验证 结果解释 适用条件的判断 结果解释 贝叶斯判别分析 具体操作 结果解释 逐步判别法 结束语…

Redis---------实现查询缓存业务

目录 数据库与缓存之间的工作业务逻辑&#xff1a; 接下来看查询缓存代码实现&#xff0c;主要是捋清楚业务逻辑&#xff0c;代码实现是死的&#xff1a; Controller: Service: P37作业实现&#xff1a;总体逻辑跟上面的业务逻辑差不多 Controller&#xff1a; Service&#…

【项目构建】04:动态库与静态库制作

OVERVIEW 1.编译动态链接库&#xff08;1&#xff09;编译动态库&#xff08;2&#xff09;链接动态库&#xff08;3&#xff09;运行时使用动态库 2.编译静态链接库&#xff08;1&#xff09;编译静态库&#xff08;2&#xff09;链接静态库&#xff08;3&#xff09;运行时使…

数字身份管理:Facebook如何利用区块链技术?

随着数字化进程的加速&#xff0c;个人身份管理已成为一个关键议题。在这方面&#xff0c;区块链技术正在逐渐展现其巨大潜力。作为全球最大的社交媒体平台&#xff0c;Facebook也在积极探索和应用区块链技术来改进其数字身份管理系统。本文将深入探讨Facebook如何利用区块链技…

【Docker学习】docker start深入研究

docker start也是很简单的命令。但因为有了几个选项&#xff0c;又变得复杂&#xff0c;而且... 命令&#xff1a; docker container start 描述&#xff1a; 启动一个或多个已停止的容器。 用法&#xff1a; docker container start [OPTIONS] CONTAINER [CONTAINER...] 别名&…

【软件工程】需求分析

目录 前言需求分析UML概述用例图用例图的组成用例图中的符号和含义包含的两种使用场景 用例图补充&#xff1a;“系统”用例模型建模确定系统参与者确定系统用例 用例文档用例文档组成部分 活动图组成元素初始节点和终点活动节点转换决策与分支、合并分岔与汇合 类图类的表示类…

【DevOps】怎么找合适的Docker镜像?

目录 一、Docker Hub介绍 主要特点和功能 使用场景 二、怎么找合适的镜像 步骤 1: 访问 Docker Hub 步骤 2: 使用搜索功能 步骤 3: 分析搜索结果 步骤 4: 阅读详细描述 步骤 5: 下载并使用镜像 例子 三、怎么样使用国内镜像加速 常用的国内 Docker 镜像加速器地址 …

2023下半年软件设计师上午题——冒泡排序

快速排除法&#xff0c;根据冒泡排序特性&#xff0c;每一趟排序都会确实最大/最小值&#xff0c;故升序两趟后&#xff0c;最后两个元素应该是已经排序好的第二大&#xff0c;和最大的元素&#xff0c;所以排除B,D&#xff0c;再因为每次排序都会两两交换&#xff0c;所以排除…

C语言-调试技巧

目录 一、调试介绍1.1 Debug和Release的介绍1.2 Windows环境调试介绍1.2.1 学会快捷键1.2.2 查看临时变量的值1.2.3 查看内存信息1.2.4 查看调用堆栈1.2.4 查看汇编信息1.2.5 查看寄存器信息 二、编程常见的错误2.1 编译型错误2.2 链接型错误2.3 运行时错误 三、易于调试的代码…

如何配置和使用Apollo的component里的plugin

关于如何使用Apollo的Component里的plugin&#xff0c;在Apollo的文档里只有如果和开发的说明却没有找到一个清楚完整说明怎么把plugin跑起来的说明&#xff0c;例如我想把lidar_detection_filter按我们的需求对目标过滤算法作修改然后编译完后&#xff0c;执行 cyber_launch …

刷题训练之位运算

> 作者&#xff1a;დ旧言~ > 座右铭&#xff1a;松树千年终是朽&#xff0c;槿花一日自为荣。 > 目标&#xff1a;熟练掌握位运算算法。 > 毒鸡汤&#xff1a;学习&#xff0c;学习&#xff0c;再学习 ! 学&#xff0c;然后知不足。 > 专栏选自&#xff1a;刷题…

菜鸡学习netty源码(一)——ServerBootStrap启动

1.概述 对于初学者而然,写一个netty本地进行测试的Server端和Client端,我们最先接触到的类就是ServerBootstrap和Bootstrap。这两个类都有一个公共的父类就是AbstractBootstrap. 那既然 ServerBootstrap和Bootstrap都有一个公共的分类,那就证明它们两个肯定有很多公共的职…

代码随想录算法训练营第二天|977.有序数组的平方、209.长度最小的子数组、59.螺旋矩阵II

977.有序数组的平方 题目链接https://leetcode.cn/problems/squares-of-a-sorted-array/description/ 题解&#xff1a; /*** Note: The returned array must be malloced, assume caller calls free().*/ int* sortedSquares(int* nums, int numsSize, int* returnSize) {/…

【Vue中的Ajax配置代理slot插槽】

Vue脚手架配置代理 安装命令 npm install axios vue.config.js 是一个可选的配置文件 如果项目的(和package . json同级的)根目录中存在这个文件&#xff0c; 那么它会被vue/cli-service自动加载 你也可以使用package.json中的 [vue字段&#xff0c;但是注意这种写法需要你严格…

Vue入门篇:样式冲突scoped,data函数,组件通信,prop data单向数据流,打包发布

这里写目录标题 1.组件的样式冲突scoped2.data函数3.组件通信1.两种组件关系分类和对应的组件通信方案2.父子通信方案的核心流程 4.prop & data、单向数据流5.打包发布6.打包优化:路由懒加载 1.组件的样式冲突scoped 默认情况:写在组件中的样式会全局生效→因此很容易造成多…

axios.get请求 重复键问题??

封装的接口方法&#xff1a; 数据&#xff1a; 多选框多选后 能得到对应的数组 但是请求的载荷却是这样的,导致会请求不到数据 departmentChecks 的格式看起来是一个数组&#xff0c;但是通常 HTTP 请求的查询参数不支持使用相同的键&#xff08;key&#xff09;名多次。如…

数据结构-链表OJ

1.删除链表中等于给定值 val 的所有结点。 . - 力扣&#xff08;LeetCode&#xff09; 思路一&#xff1a;遍历原链表&#xff0c;将值为val的节点释放掉 思路二&#xff1a;创建一个新链表&#xff0c;将值不为val的节点尾插到新链表中 /*** Definition for singly-linked …

Stable Diffusion WebUI 中调度器(Schedule type)简单研究

&#x1f48e;内容概要 在近期&#xff0c;stable diffusion webui更新了1.9版本&#xff0c;其中包含的一项变化就是&#xff0c;把采样器和调度器&#xff08;Schedule type&#xff09;分开了&#xff0c;之前是合并在一起来选择的&#xff0c;所以这篇文章主要分两个部分&…