LLaMA 3:大模型之战的新序幕

news2024/11/25 6:54:55

1f90835abc87eaa82c4081f791ed4414.jpeg

作者 | 符尧

OneFlow编译

翻译|杨婷、宛子琳、张雪聃

本文要点概览:

  • 文本数据的扩展可能已经达到了极限,因为易于获取的网络文本资源(如Common Crawl、GitHub、ArXiv等)已基本被充分利用。

  • 尽管如此,通过更深入地挖掘互联网资源、搜寻图书馆藏书及使用合成数据,我们仍有望获得新的文本数据,但要实现数据量级的大幅提升却面临重重挑战——这些新增的数据更可能是当前数量级上的增量。

  • 规模扩展竞赛的新阶段将转向多模态领域,尤其是统一的视频-语言生成模型,因为仅有视频数据可以实现数量级的增长。

  • 然而,坏消息是,视频数据似乎并不能显著提升模型的推理(reasoning)能力,而这一能力是区分模型强弱的首要指标。

  • 但好消息是,视频数据能够带来其他性能的显著提升,尤其是增强了模型与现实世界的联系,展现出成为神经世界模型(neural world model)的巨大潜力(与Zelda等硬编码物理引擎不同),这提供了从模拟物理反馈中学习的可能性。

  • 从X(X表示人类、人工智能和环境反馈)反馈中扩展强化学习可能是持续提升模型推理能力最有前景的路径。

  • 类似于AlphaGo Zero在围棋领域取得的超人类成就,自我对弈和与环境互动可能是超人类生成模型的一个方向。使模型保持在线状态,并从反馈中进行迭代学习(而非一次性的离线优化),有望实现推理能力的持续提升。

  • 规模扩展竞赛的第一阶段聚焦于扩展文本数据,在GPT-4达到顶峰,并由LLaMA 3画上句号。接下来的第二阶段将聚焦于统一的视频-语言生成模型建模,以及基于X反馈的迭代强化学习。

(本文作者为符尧是爱丁堡大学博士生。本文由OneFlow编译发布,转载请联系授权。原文:https://yaofu.notion.site/Apr-2024-Llama-3-Opens-the-Second-Chapter-of-the-Game-of-Scale-efff1c0c185f4008af673b78faf83b61 声明:本文是作者阅读LLaMA 3的发布说明后,对将来工作方向的研究笔记。文中提出的观点可能与现行观点存在差异,欢迎批评指正。)

1

LLaMA 3的性能如何?

LLaMA 3的性能相当不错。

在评估基础模型时,我们会关注MMLU、MATH、GPQA和BBH等关键指标,因为这些指标能够衡量模型的高级知识与推理能力。目前的排行榜如下:

3f67d71e7f189a7842a3b207259c1537.png

LLaMA 3 70B的一个显著特点是,其性能明显优于其他同级别的70B模型(其MMLU通常在70+左右),并进入了80+ MMLU的前沿模型领域。

LLaMA 3 70B模型之所以能在MMLU上取得如此优异的成绩,可能有以下两个原因:

  • 它使用了15T的训练词元,这一数量远远超过了其它同类模型。

    • 特别是混合代码与arxiv数据可能提升了模型的推理能力。

  • 它采用了与基准测试相关的持续预训练数据。(如Llemma/ MetaMath/ Mammoth)来提升或优化基准测试的表现。

    • 然而,当模型得分达到80+之后,尽管并非不可能实现,但要进一步提升MMLU的得分将极具挑战性,因为MMLU数据集本身的难度就相当高。

LLaMA 3 chatbot版本的表现也相当好。

430b5f2565de4f24091c068a7d4de415.jpeg

需要注意的是,虽然在LLaMA 3发布后不久,其评分呈明显的上升趋势,初始排名大约在第三位(通过文本的特定模式,我们可以轻易评断LLaMA 3给出的答案),但现在其ELO分数正逐渐下降。尽管如此,其置信区间仍为(+9/-11),远远高于其他模型的(+5/-5),因此它的排名可能会继续下降。

  • LLaMA 3的初始排名上得到了较少的投票,且排名升降幅度较大。

实际上,完全没有必要对其性能进行夸大或者虚增分数,因为LLaMA 3本身已经是一个非常出色的模型,这样做可能会增加其在公众中的声誉(或许不会),但肯定会损害在专业人士中的声誉。再次强调,LLaMA 3已经是目前最强的开源大模型。

我预计,它最终的ELO分数可能会稳定在GPT-4 0314版本的1180分左右,这与Claude 3 Haiku的性能相当,同样是一个非常好的成绩。

2

文本数据扩展的极限

文本数据扩展的极限可能已经到来。因为我们注意到GPT-4 Turbo、Gemini Ultra、Claude 3 Opus和Llama 3 400B的性能都在大致相同的范围内(MMLU约为85)。要继续扩大文本规模,就需要更多的数据,但问题在于,是否能大幅增加文本数据量,超过LLaMA 3的15T词元。

以下是按照新数据潜在规模排名的几个方向:

  • Common Crawl(CC)仅覆盖了整个互联网数据的一部分。

  • 我们尚未完成从CC中挖掘和抓取数据。

  • 放宽过滤和去重标准。

  • 利用现有模型生成合成数据。

  • 从图书馆中搜寻更多书籍。

接下来,本文将逐一探讨这些方向。

Common Crawl只是互联网数据的一部分

  • Common Crawl是文本规模扩展最大的不确定因素,因为我们不知道实际的互联网数据有多大。

  • 微软、谷歌和Meta等公司可以轻易获取超出CC范围的更多数据。

  • 但问题在于,经过去重和质量过滤之后,还能剩多少词元。

我们仍在从CC中挖掘数据

  • 这种方法的问题在于,我们能够从现有CC中生成的词元数量受到数据处理流程上限的约束,因此在数据的数量级上可能不会发生变化。

  • 新的CC数据随着时间线性增加,但数量级上没有变化。

  • 但规模定律(scaling law)表明,数据呈指数级增长会带来性能的线性增长。因此,最终我们可能会在LLaMA 3 15T的数据基础上增加5T的新词元,但我们真正想要的其实是再增加50T词元。

放宽过滤和去重标准

  • 原始数据量十分庞大,因为数据质量以及重复的问题,我们并未使用全部数据。百川智能的报告展示了过滤对最终词元数量的影响:

b27a1eac7e76f3e986d28def2f56b9fb.png

  • 如何确定数据质量与去重标准,这个问题有待研究(参见Shayne等人,Muennighoff等人和Xue等人)。一般来说,标准可能不宜过于宽松。

使用合成数据

  • 近期,Liu等人针对合成数据进行了很好的总结,重点介绍了推理、工具使用、多模态、多语言和对齐数据的数据来源。

  • 核心挑战依然存在:目前大部分数据研究似乎还未能实现量级突破,因此它们主要被用于持续预训练和微调,而非直接用于预训练。

  • 唯一的例外是Phi模型系列 ,因为他们使用GPT-4生成的数据来训练一个更小的模型。不过这种方法的问题在于能否扩展到更大的模型,并打破GPT-4的上限。

搜寻更多的图书馆藏书

  • 这一方向显然是有希望的,因为图书馆书籍的数据质量绝对是极高的,比网络数据的质量高得多,并且可以显著提高专业知识基准分数,如MMLU。以下是世界上最大的图书馆列表:

48b1ccb22e39d099d71f98037aac3ee8.png

  • 但问题不在于技术方面。从这些图书馆购买版权可能会耗费全部的AI投资成本,且其中很大一部分并不对外出售。此外,如果平均每本书有70K词元,那么2亿本书则只有约14T词元,虽然这一数字是现有数量的两倍,但还不够多。

3

扩展规模肯定没错,但接下来该扩展什么呢?

前文已经讨论得出结论,GPT-4级别的前沿模型很可能已经接近文本规模的上限,而进一步扩展文本数据可能会遇到更加艰巨的挑战(但也仍然可能是一种方法)。我们当然希望继续这场狂欢,因为规模扩展是不变的法则,它始终能够生效,但问题在于下一步该扩展什么数据。

视频数据可能不会改善推理能力,但可以提升其他方面

  • 一个明确的方向是多模态数据,尤其是视频数据。据推测,YouTube和TikTok的规模可能比文本大几个数量级,这就是新的数量级来源。但这种方法存在一个挑战:多模态数据是否能提升基于文本的推理能力?

  • 答案很可能是否定的。接着就是一个现实问题:如果OpenAI下个月发布GPT-5,其MMMU得分从56提高到70,但MMLU仍然保持在86,这意味着什么?公众会作何反应呢?

  • MMMU排行榜截图

    3736f15f5849cc77197849c6c658d5fd.jpeg

  • 然而好消息是,即使视频数据不能提高推理能力,也可以改善其他方面的性能,尤其是接地信息(grounding),从而使模型能够接收来自现实世界的反馈。

要提高推理能力,需要在强化学习中扩大探索和利用的规模

  • 具体来说,可能需要扩展:

    • 模型探索的时间跨度。例如,将模型在线部署一年并每周更新,而不只是进行单步优化。

    • 模型的搜索空间。例如,让模型生成一百万个响应,并从中选择最佳响应,而不是原始InstructGPT的七选一方法。

    • 模型的反馈来源。主要指逐渐从人类反馈转向人工智能和环境反馈(因为人类反馈不具备可扩展性,且模型正在变得比其人类标注者更强大),因此需要世界模型。

  • 很不幸的是,许多现有的研究工作都集中于微小细节的小规模单轮优化,比如在DPO上添加一个损失项。然而,关键在于在线迭代式的大规模探索和利用

4

扩展统一的视频-语言生成模型

那么,只是扩大视频-语言模型的规模?听起来并不是很难?

目前的情况是,在文本扩展领域,我们拥有十分标准的架构(MoE transformer)、标准的目标(下一个单词预测),以及标准的pipeline(预训练后再对齐),而在视觉/多模态生成模型中,情况却不尽相同。其设计空间比语言模型大得多,我们甚至未能在一些基本问题上达成共识,例如:

  • 我们应该像LLaVA目前的做法一样,先在各自的模态上进行训练,然后使用适配器来桥接模态,还是应该直接在所有模态的混合上进行训练?

  • 在图像/视频部分,我们应该使用统一的Transformer核心结构,还是一些计算机视觉技术,如UNet和CNN?我们应该对Transformer架构进行哪些修改(如3D位置编码)?如何充分利用混合专家层?

  • 增加新的模态至少不应该对现有的模态造成负面影响,然而常见的情况是,增加视觉可能会对语言产生负面影响。如何调和不同模态之间的矛盾?

  • 对于视频理解部分,如何进行分词/表示学习?应该考虑使用类似VQ-VAE的离散词元,还是类似Sora的连续时空块?应该使用类似CLIP的对比式目标,还是类似原始VAE的重构式目标?

  • 对于视频生成部分,应该像VideoPoet那样是自回归的,还是像Sora那样基于扩散的?如何训练一个可以同时执行扩散式生成和自回归式生成的Transformer模型?

最终的解决方案也许非常简单,只需要修改现有解决方案的一小部分,但要确定这些细小而关键的修改,社区需要对这些问题进行饱和式研究。

5

通过从X反馈中进行迭代强化学习

生成类似于AlphaZero的智能体

我们已经讨论过用于预训练的新数据可能有限,以及多模态可能不会改进推理能力,为了进一步提高推理能力(毕竟这是语言模型的核心能力),我们将焦点转向了扩展强化学习。

问题又回来了,要扩展什么呢?好消息是,基本上强化学习中的任何维度都可以和应该被扩展。我们首先要讨论一个特定的指标:pass@K,它表示在K次尝试中,模型至少成功一次的概率。DPO的优化基准是pass@2(选择一个好的回答,拒绝一个不好的回答),而InstructGPT的基准是pass@7(从7个候选项中选择最佳的一个回答)。

如果我们将K值扩展到1百万,会发生什么呢?

从AlphaCode论文中,可以看到当扩展K值时,模型的通过率不断提高:

cc0b32f7d689bcf08456954a0a359b21.png

Yuxuan Tong(https://www.notion.so/Scaling-up-k-in-Pass-k-on-MATH500-5c44436a2cd643b381e74427e7f7b14f?pvs=4)在数学上验证了DeepSeek和Mistral在扩展搜索空间K时不断改进的情况:

ce521558db1f87ed976775a32390049d.png

显然,曲线尚未达到饱和状态。

一个直接的问题是,如何从一百万个候选项中选择最佳的一个回答?通过跟踪GPT-4在2023年3月至2024年4月期间的数学性能改进,我们可以来了解其方法:

48c5fb9dfcc21fef6a6bfb0b26095dba.png

这些改进显示:

  • 用基于代码的反馈来验证答案

  • 用基于过程的奖励模型来验证答案

  • 用专家级注释来生成反馈

值得注意的是,这些改进不是一次性优化的结果,而是通过多轮优化逐步完成的,Anthropic将其称为在线迭代RLHF(https://arxiv.org/abs/2204.05862):

64ac9b940995b4e193fd063e90296f00.png

Claude-1的在线迭代RLHF

LLaMA 2的实践也验证了迭代改进的有效性:

d2e12e5a27b74f77ced691271f8adc54.png

LLaMA 2在多个版本上的迭代改进

以及Shangmin(https://arxiv.org/abs/2402.04792)的在线AI反馈:

207b2f5f9e86a5dc65ea2ba33b75e085.png

6

结论:规模扩展竞赛的第二阶段

实际上,人类接近文本数据的极限这一事实,OpenAI在 2022 年中旬就已经意识到了,当时他们已经完成了GPT-4初始版本的训练。现在是2024年4月,随着LLaMA 3的发布,是时候总结规模扩展之战的第一阶段了,在这一阶段中,大多数前沿模型都与GPT-4达到了同等水平。

2023年,多模态生成模型的竞争已经展开,其中以图像能力为起点。目前,只有Gemini和Reka能够理解视频(但不能生成视频),而Sora似乎是唯一能够生成长达一分钟视频的模型(但仅限视频)。此外,只有GPT-4 Turbo、AlphaCode和DeepSeek Math探讨了如何扩展搜索空间和反馈信号,而只有GPT-4和Claude报告了在线迭代RLHF的详尽结果。

大模型规模扩展竞赛的第二篇章现已揭开序幕。

【语言大模型推理最高加速11倍】SiliconLLM是由硅基流动开发的高效、易用、可扩展的LLM推理加速引擎,旨在为用户提供开箱即用的推理加速能力,显著降低大模型部署成本,加速生成式AI产品落地。(技术合作、交流请添加微信:SiliconFlow01)

2e2e73a307606331d493436586eacc64.png

SiliconLLM的吞吐最高提升近4倍,时延最高降低近4

73f5b23c2a46f553e3c57e5fac0a32d7.png

数据中心+PCIe:SiliconLLM的吞吐最高提升近5倍;消费卡场景:SiliconLLM的吞吐最高提升近3

4a9c2fb5e3ade0bc8a25d4abbbf562f3.png

System Prompt场景:SiliconLLM的吞吐最高提升11倍;MoE模型:推理 SiliconLLM的吞吐最高提升近10

其他人都在看

d7857b659ff6f54ebc18c18ce0f0b9f3.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1632637.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

JAVASE->数据结构|顺序表底层逻辑

✅作者简介:大家好,我是橘橙黄又青,一个想要与大家共同进步的男人😉😉 🍎个人主页:再无B~U~G-CSDN博客 目标: 1. 什么是 List 2. List 常见接口介绍 3. …

js 中的非空断言操作符 (!.)叹号加点

js 中的非空断言操作符 (!.)叹号加点 在 TypeScript 或 JavaScript 中,!.并不是一个官方的语法结构。然而,!符号在 TypeScript 中确实有特定的用法,它被称为非空断言操作符。 !通常用作逻辑非操作符,用于…

cuda和cudnn的安装(ubuntu22.04环境)

一、安装准备 安装依赖 sudo apt-get update sudo apt-get install g sudo apt-get install gcc sudo apt-get install make禁用默认驱动 sudo gedit /etc/modprobe.d/blacklist.conf 在末尾加上 blacklist nouveau options nouveau modeset0更新一下initramfs -u的镜像 s…

自动驾驶横向控制算法

本文内容来源是B站——忠厚老实的老王,侵删。 三个坐标系和一些有关的物理量 使用 frenet坐标系可以实现将车辆纵向控制和横向控制解耦,将其分开控制。使用右手系来进行学习。 一些有关物理量的基本概念: 运动学方程 建立微分方程 主要是弄…

【跟我学RISC-V】认识RISC-V指令集并搭建实验环境

写在前面 现在计算机的体系架构正是发展得如火如荼的时候,占领桌面端市场的x86架构、占领移动端市场的arm架构、在服务器市场仍有一定地位的mips架构、国产自研的指令集loongarch架构、还有我现在要讲到的新型开源开放的RISC-V指令集架构。 我先说一说我的学习经历…

第9章 知识产权

一、著作权 (一)版权 版权,亦称“著作权”,符号:©。指作者或其他人(包括法人)依法对某一著作物享受的权利。 1、人身权 包括发表权、署名权、修改权、限制。发表权为著作人终身及其死后…

编程代码查重 比赛防作弊 图形界面代码查重工具SIM 支持c++ python java c语言下载

SIM,全称The software and text similarity tester SIM,是Dick grune开发的一款代码查重软件。比较轻量级,也被一些OJ集成用来查重(如hustoj)。但由于软件本身是命令行软件(就是小黑框框的那种)…

IDEA 中的奇技淫巧

IDEA 中的奇技淫巧 书签 在使用ctrlalt方向键跳转时,或者追踪代码时,经常遇到的情况是层级太多,找不到代码的初始位置,入口。可以通过书签的形式去打上一个标记,后续可以直接跳转到书签位置。 标记书签:c…

DevTools failed to load SourceMap: Could not load content for http://127.0.0

运行时报错: DevTools failed to load SourceMap: Could not load content for http://127.0.0.1:64311/.sourcemap/mp-weixin/pages/***/***.js.map: HTTP error: status code 403, net::ERR_HTTP_RESPONSE_CODE_FAILUREDevTools failed to load SourceMap: Could …

CommonJS-模块与ES模块简单了解与区别

文章目录 CommonJS 模块与ES模块简单了解与区别一、简介二、区别1.语法差异2.实现差异 三、其他 CommonJS 模块与ES模块简单了解与区别 今天在用vite构建项目时,用了module.exports写法一直报错,后面了解是因为commonJS模块(以下简称CJS)与E…

改进了洗搞提示词后,Kimi的效果竟秒杀GPT4.0!

大家好,我是五竹。 在《玩转GPT指南》中的AI爆文写作专项中提过,新人使用AI创作爆文最快的流程就是:找对标文章->使用AI对对标文章进行仿写/改写/原创。 其中改写最简单但缺点也很明显,就是和原文的重复率过高,我…

前端可以掌握的nginx相关操作

一、前言: 在日常开发中,前端工程师可以把打好的前端包直接放到测试服务器上,自己再验证功能是否改好,这样可以提高开发效率,写篇笔记记录一下我个人用到的命令 二、使用的工具 用MobaXterm完成相关操作&#xff0c…

java语言开发的商城系统有哪些?

最近,有小伙伴问我有没有靠谱的java商城系统,经过我一顿扒拉,终于给大家整理出来了。 目前java语言开发的商城系统主要有shop、javashop、ejavashop、yuanfeng、mall4j、lilishop等。在没有深入了解这些系统前,我们可以从产品推出…

两种类型的二叉搜索树

文章目录 1.搜索二叉树的概念2.搜索二叉树的模拟实现2.1 搜索二叉树的结构2.2 插入2.3 查找2.4 删除2.5 中序遍历2.6 完整代码 3.二叉搜索树的两种模型3.1 两种模型3.2 key_value模型搜索二叉树 4.两种二叉树的测试 1.搜索二叉树的概念 二叉搜索树又称二叉排序树,它…

【Canvas与艺术】 绘制五星红旗

【注意】 该图中五星定位和大小都是按 https://www.douyin.com/note/7149362345016380710 精确绘制的。 【成图】 【代码】 <!DOCTYPE html> <html lang"utf-8"> <meta http-equiv"Content-Type" content"text/html; charsetutf-8&q…

[iOS]组件化开发

一、组件化开发基础 1.组件定义 在软件开发中&#xff0c;一个组件是指一个独立的、可替换的软件单元&#xff0c;它封装了一组相关的功能。组件通过定义的接口与外界交互&#xff0c;并且这些接口隔离了组件内部的实现细节。在Swift语言中&#xff0c;组件可以是一个模块、一…

Qt使用OPCUA

假如想在Qt下使用OPCUA通讯&#xff0c;貌似大家都是倾向于使用【qtopcua】这个库。但是在Qt6之前&#xff0c;假如想使用这个库&#xff0c;还得自己编译&#xff0c;比较繁琐。假如想开箱即用&#xff0c;而且没有使用太复杂的功能的话&#xff0c;其实可以直接使用open62541…

项目:使用LNMP搭建私有云存储

目录 项目&#xff1a;使用LNMP搭建私有云存储 准备工作 回复快照&#xff0c;关闭安全软件 上传软件 设置nextcloud安装命令权限 设置数据库 重启数据库 配置nginx 安装 内网穿透 cpolar的域名信任 项目&#xff1a;使用LNMP搭建私有云存储 准备工作 回复快照&a…

Word插件开发

VSTO是Visual Studio Tools for Office的简称&#xff0c;它是Microsoft Visual Studio的一个扩展&#xff0c;用于开发基于Microsoft Office平台的应用程序。VSTO提供了一套API和工具&#xff0c;使开发人员能够利用Visual Studio IDE来开发定制的Office解决方案。 在 Visual…

MySQL中的数据类型及一些应用场景

1.6. 数据类型 MySQL的数据分为以下几个大类&#xff1a; 1. String Types 字符串类型 2. Numeric Types 数字类型 3. Date and Time Types 日期和时间类型 4. Blog Types 存放二进制的数据类型 5. Spatial Types 存放地理数据的类型 1.6.1. 字符串类型 最常用的两个字符串类…