【Linux系统化学习】死锁 | 线程同步

news2024/10/7 18:29:24

目录

死锁

死锁的必要条件

避免死锁

线程同步

条件变量

同步概念和竞态条件

条件变量接口

创建和初始化条件变量

等待条件满足

唤醒等待

 毁条件变量

为什么 pthread_cond_wait 需要互斥量?

条件变量使用规范

等待条件代码

给条件发送信号代码


死锁

死锁是指在一组线程中的各个线程均占有不会释放的资源,但因互相申请被其他线程所站用不会释放的资源而处于的一种永久等待状态。(编码疏忽造成的问题)

简单的例子

void *route(void *arg)
{
    char *id = (char *)arg;
    while (1)
    {
        pthread_mutex_lock(&mutex);
        if (ticket > 0)
        {
            usleep(1000);
            printf("%s sells ticket:%d\n", id, ticket);
            ticket--;
            //再次申请锁
            pthread_mutex_lock(&mutex);
        }
        else
        {
            //再次申请锁
            pthread_mutex_lock(&mutex);
            break;
        }
    }
}

以上篇文章的抢票代码为例:进程中只含有一个锁,当一个执行流进入临界区时申请加锁,因为只有一个锁且没有被使用所以会加锁成功,在出临界区的时候,又申请加锁,此时唯一的锁已经被申请了,会申请加锁失败,就会被挂起,造成永久等待即死锁。

死锁的必要条件

互斥条件:一个资源每次只能被一个执行流使用(使用锁)
请求与保持条件:一个执行流因请求资源而阻塞时,对已获得的资源保持不放(加锁后不解锁)
不剥夺条件:一个执行流已获得的资源,在末使用完之前,不能强行剥夺(加锁后不可以被强制解锁)
循环等待条件:若干执行流之间形成一种头尾相接的循环等待资源的关系(多执行流多把锁相互申请)

避免死锁

  • 破坏死锁的四个必要条件
  • 加锁顺序一致
  • 避免锁未释放的场景
  • 资源一次性分配

第一个条件就是对上面四个条件中的一个或多个条件破坏掉即可。 死锁的产生是因为在代码过程中使用了锁,那我们在编写程序的时非必要条件下可以不使用锁。


线程同步

在上篇文章线程互斥中的我们提到了一个问题:如果一个线程对锁的竞争能力比较强的话,会一直抢夺公共资源;导致其他线程拿不到这个资源也就是线程饥饿。我们可以在一个线程申请加锁获取到公共资源后解锁,再将其纳入到一个类似队列结构的队尾即可解决这个问题也就是线程同步。

条件变量

当一个线程互斥地访问某个变量时,它可能发现在其它线程改变状态之前,它什么也做不了。
例如:一个线程访问队列时,发现队列为空,它只能等待,只到其它线程将一个节点添加到队列中。这种情况就需要用到条件变量。(一个线程向另一个线程通知消息的方式)

例子:张三在一张桌子上放苹果,李四蒙着眼睛拿桌子上的苹果,桌子含有一个只能服务一个人管理员;当桌子没有苹果的时候,李四会轮询访问管理员有没有苹果,这样即成管理员的资源浪费有没办法让张三放苹果;于是管理员想到一个办法,在桌子上安装一个铃铛;当没有苹果且李四过来拿苹果的时候,管理员会让李四在一旁阻塞等待;当张三放在桌子上的苹果到达一定数量时,管理员会按一下这个铃铛,李四才会拿苹果。这个例子中的铃铛就是一个条件变量

同步概念和竞态条件

  • 同步:在保证数据安全的前提下,让线程能够按照某种特定的顺序访问临界资源,从而有效避免饥饿问题,叫做同步
  • 竞态条件:因为时序问题,而导致程序异常,我们称之为竞态条件。在线程场景下,这种问题也不难理解

条件变量接口

创建和初始化条件变量

pthread_cond_t cond;//定义变量后再初始化
int pthread_cond_init(pthread_cond_t *restrict cond,const pthread_condattr_t *restrict attr);

参数

cond:要初始化的条件变量
attr:NULL

等待条件满足

int pthread_cond_wait(pthread_cond_t *restrict cond,pthread_mutex_t *restrict mutex);

参数

cond:要在这个条件变量上等待
mutex:互斥量

唤醒等待

//唤醒所有线程
int pthread_cond_broadcast(pthread_cond_t *cond);
//唤醒单个线程
int pthread_cond_signal(pthread_cond_t *cond);

 毁条件变量

int pthread_cond_destroy(pthread_cond_t *cond)

简单样例

#include<iostream>
#include<string>
#include<pthread.h>
#include<unistd.h>
using namespace std;
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
void* threadRoutine(void* args)
{
    string name = static_cast<const char*> (args);
    while(true)
    {
        pthread_mutex_lock(&mutex);
        pthread_cond_wait(&cond,&mutex);
        
        cout<<"I am a new thread : "<<name<<endl;
        pthread_mutex_unlock(&mutex);
    }   
}
int main()
{
    pthread_t t1,t2,t3;
    pthread_create(&t1,nullptr,threadRoutine,(void * )"thread_1");
    pthread_create(&t2,nullptr,threadRoutine,(void * )"thread_2");
    pthread_create(&t3,nullptr,threadRoutine,(void * )"thread_3");
    sleep(3);
    while(true)
    {
        pthread_cond_signal(&cond);
        sleep(1);
    }
    pthread_join(t1,nullptr);
    pthread_join(t2,nullptr);
    pthread_join(t3,nullptr);
    return 0;
}

 注:

  • 线程在进行等待的时候,会自动释放锁
  • 线程被唤醒的时候,实在临界区内,当线程被唤醒时在pthread_cond_wait返回的时候,要重新申请并持有锁
  • 当线程被唤醒的时候,会重新申请并持有锁本质也是要参与锁的竞争的

为什么 pthread_cond_wait 需要互斥量?

  • 条件等待是线程间同步的一种手段,如果只有一个线程,条件不满足,一直等下去都不会满足,所以必须要有一个线程通过某些操作,改变共享变量,使原先不满足的条件变得满足,并且友好的通知等待在条件变量上的线程。
  • 条件不会无缘无故的突然变得满足了,必然会牵扯到共享数据的变化。所以一定要用互斥锁来保护。没有互斥锁就无法安全的获取和修改共享数据。
  • 按照上面的说法,我们设计出如下的代码:先上锁,发现条件不满足,解锁,然后等待在条件变量上不就行了,如下代码:

// 错误的设计
pthread_mutex_lock(&mutex);
while (condition_is_false) {
pthread_mutex_unlock(&mutex);
//解锁之后,等待之前,条件可能已经满足,信号已经发出,但是该信号可能被错过
pthread_cond_wait(&cond);
pthread_mutex_lock(&mutex);
}
pthread_mutex_unlock(&mutex);
  • 由于解锁和等待不是原子操作。调用解锁之后, pthread_cond_wait 之前,如果已经有其他线程获取到互斥量,摒弃条件满足,发送了信号,那么 pthread_cond_wait 将错过这个信号,可能会导致线程永远阻塞在这个 pthread_cond_wait 。所以解锁和等待必须是一个原子操作。
  • int pthread_cond_wait(pthread_cond_ t *cond,pthread_mutex_ t * mutex); 进入该函数后,会去看条件量等于0不?等于,就把互斥量变成1,直到cond_ wait返回,把条件量改成1,把互斥量恢复成原样

条件变量使用规范

等待条件代码

pthread_mutex_lock(&mutex);
while (条件为假)
pthread_cond_wait(cond, mutex);
修改条件
pthread_mutex_unlock(&mutex);

给条件发送信号代码

pthread_mutex_lock(&mutex);
设置条件为真
pthread_cond_signal(cond);
pthread_mutex_unlock(&mutex);

今天对Linux下线程同步和死锁锁的分享到这就结束了,希望大家读完后有很大的收获,也可以在评论区点评文章中的内容和分享自己的看法;个人主页还有很多精彩的内容。您三连的支持就是我前进的动力,感谢大家的支持!!! 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1624723.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

深度探讨容器化技术在网络安全中的应用与挑战

随着容器化技术的快速发展&#xff0c;尤其是Docker与Kubernetes&#xff08;K8s&#xff09;的广泛应用&#xff0c;企业IT架构正经历着从传统虚拟机向轻量级容器的深刻变革。容器化技术为提升资源利用率、加速应用部署及维护提供了强大支持&#xff0c;但同时也给网络安全带来…

用 VMare Workstation 搭建 esxi --- (一)创建 exsi 虚拟机

用 VMare Workstation 搭建 esxi 文章目录 用 VMare Workstation 搭建 esxi创建虚拟机 创建虚拟机

企业微信代开发应用登录操作

首先声明&#xff1a;企微的文档写得真烂&#xff01;&#xff01;&#xff01;有一些问题&#xff0c;官方情愿在问答区给用户一个个解答&#xff0c;也不愿意在文档写清楚&#xff0c;生怕自己工作量不饱和被优化。 概念说明 代开发应用&#xff0c;是相对于自建应用来说的。…

计算机网络和因特网

Internet: 主机/端系统&#xff08;end System / host&#xff09;&#xff1a; 硬件 操作系统 网络应用程序 通信链路&#xff1a; 光纤、网络电缆、无线电、卫星 传输效率&#xff1a;带宽&#xff08;bps&#xff09; 分组交换设备&#xff1a;转达分组 包括&#…

Centos的一些基础命令

CentOS是一个基于开源代码构建的免费Linux发行版&#xff0c;它由Red Hat Enterprise Linux (RHEL) 的源代码重新编译而成。由于 CentOS是基于RHEL构建的&#xff0c;因此它与RHEL具有非常类似的特性和功能&#xff0c;包括稳定性、安全性和可靠性。并且大部分的 Linux 命令在C…

SpringBoot学习之Redis下载安装启动【Mac版本】(三十七)

一、下载Redis 1、下载地址:Downloads - Redis 往下滑,找到Downloads区域,这里有若干版本,这里我们选择了7.0的稳定版本 2、我们下载的是redis-7.0.15.tar.gz,这是一个压缩包,我们双击解压这个压缩包,可以得到如下文件 二、安装Redis 1、我们进入redis根目录安装mak…

Orange3数据可视化(树查看器-决策树)

树视图 分类和回归树的可视化。 输入 树&#xff1a;决策树 输出 选中的数据&#xff1a;从树节点中选中的实例 数据&#xff1a;带有额外一列&#xff0c;显示每个点是否被选中 这是一个多功能的小部件&#xff0c;用于展示分类和回归树的2D可视化。用户可以选择一个节点…

jvm知识点总结(二)

Java8默认使用的垃圾收集器是什么? Java8版本的Hotspot JVM,默认情况下使用的是并行垃圾收集器&#xff08;Parallel GC&#xff09; 如果CPU使用率飙升&#xff0c;如何排查? 1.先通过top定位到消耗最高的进程id 2.执行top -h pid单独监控该进程 3.在2中输入H&#xff…

Laravel 6 - 第十八章 模型

​ 文章目录 Laravel 6 - 第一章 简介 Laravel 6 - 第二章 项目搭建 Laravel 6 - 第三章 文件夹结构 Laravel 6 - 第四章 生命周期 Laravel 6 - 第五章 控制反转和依赖注入 Laravel 6 - 第六章 服务容器 Laravel 6 - 第七章 服务提供者 Laravel 6 - 第八章 门面 Laravel 6 - …

SN75107BDR 总线接收器 中文资料_PDF中文资料_参数_引脚图

SN75107BDR 规格信息&#xff1a; 制造商:Texas Instruments 产品种类:总线接收器 RoHS:是 接收机数量:2 Receiver 接收机信号类型:Differential 电源电压-最小:/- 4.75 V 电源电压-最大:/- 5.25 V 工作电源电流:30 mA 最小工作温度:0 C 最大工作温度: 70 C 封装 / 箱…

Honor of Kings PC Simulator S35

Honor of Kings PC Simulator S35 [王者荣耀PC模拟器S35] 1&#xff09;卡顿&#xff0c;延迟高 2&#xff09;技能方向控制麻烦 3&#xff09;技能释放位置麻烦 4&#xff09;方向控制麻烦 2024-04-26 04-00-16-Honor of Kings PC Simulator S35 [王者荣耀PC模拟器S35]_哔…

小白学习SpringCloud之Eureka

前言 需要搭建springcloud项目&#xff0c;eureka是其中的一个模块&#xff0c;依赖主要继承父依赖 学习视频&#xff1a;b站狂神说 便于理解,我修改了本地域名》这里!!! 127.0.0.1 eureka7001.com 127.0.0.1 eureka7002.com 127.0.0.1 eureka7003.comEureka入门案例 eureka…

Pytorch迁移学习训练病变分类模型

划分数据集 1.创建训练集文件夹和测试集文件夹 # 创建 train 文件夹 os.mkdir(os.path.join(dataset_path, train))# 创建 test 文件夹 os.mkdir(os.path.join(dataset_path, val))# 在 train 和 test 文件夹中创建各类别子文件夹 for Retinopathy in classes:os.mkdir(os.pa…

【STM32 IIC通信与温湿度传感器AHT20(I2C_AHT20)】

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 最终效果展示AHT20温湿度传感器&#xff08;I2C_AHT20&#xff09; 1、工程配置2、代码如果您发现文章有错误请与我留言&#xff0c;感谢 最终效果展示 详细讲解视频…

Vivado-IP-DDS and Testbench Learning

DDS内部结构 实现流程 首先新建一个工程&#xff0c;创建bd文件&#xff0c;添加DDS Compiler核&#xff0c;此处不多赘述 Block Design 在观测输出的信号时&#xff0c;需要将最高位符号位的信号取反&#xff0c;这样才能输出正弦波&#xff0c;否则输出的波形如下图所示 将t…

深度学习--RNN循环神经网络和LSTM

RNN RNN简介 我们来看一看百度百科给的解释 下面是循环神经网络的一部分 黑色直线代表权重&#xff0c;a1&#xff0c;a2代表存储单元&#xff0c;黄色框框代表输入&#xff0c;曲线是激活函数 RNN常用领域 语言建模&#xff08;Language Modeling&#xff09;&#xff1a;…

视频抽帧转图片,opencv和ffmpeg效果测评

最近在做一个项目&#xff0c;需要从视频中抽帧转图片&#xff0c;于是对opencv和ffmpeg效果进行了测评。 文章目录 1. open cv2. ffmpeg3.抽帧效果对比 1. open cv open cv 视频抽图片的教程&#xff0c;推荐以下链接&#xff0c;抽的帧数可以自行调节&#xff01; 用pythono…

重磅!!!监控分布式NVIDIA-GPU状态

简介&#xff1a;Uptime Kuma是一个易于使用的自托管监控工具&#xff0c;它的界面干净简洁&#xff0c;部署和使用都非常方便&#xff0c;用来监控GPU是否在占用&#xff0c;非常美观。 历史攻略&#xff1a; docker应用&#xff1a;搭建uptime-kuma监控站点 win下持续观察…

windows11编译3dslicer_问题总结

编译前准备 CMake&#xff1a;版本>3.16.3&#xff08;避免使用3.21.0&#xff0c;3.25.0-3.25.2&#xff0c;这些版本&#xff0c;可能会出现build错误&#xff09;。Git&#xff1a;版本>1.7.10&#xff0c;安装完git&#xff0c;一定要在cmd里面试一试&#xff0c;是…

DRF学习之三大认证

一、认证 1、自定义认证 在前面说的 APIView 中封装了三大认证&#xff0c;分别为认证、权限、频率。认证即登录认证&#xff0c;权限表示该用户是否有权限访问接口&#xff0c;频率表示用户指定时间内能访问接口的次数。整个请求最开始的也是认证。 &#xff08;1&#xff…